
NASA Contractor Report 189632, Volume I

Advanced Information Processing System:
The Army Fault Tolerant Architecture
Conceptual Study

Volume I- Army Fault Tolerant Architecture
Overview

• /

y._L:/

\
%.

R. E. Harper, L. S. Alger, C. A. Babikyan, B. P. Butler, S.

A. Friend, R. J. Ganska, J. H. Lala, T. K. Masotto, A. J.

Meyer, D. P. Morton, G. A. Nagle, C. E. Sakamaki

The Charles Stark Draper Laboratory, Inc.

Cambridge, MA

Contract NAS1-18565

July 1992

Nahonal Aeronaul)cs and
Space Adminislration

Langley ResearchCenter
Hampton,Virginia 23665-5225 (NASA-CR-IS?632-VoI-I) ADVANCED

INFORMATION PROCESSING SYSTEM: THE

ARmY FAULT TOLERANT ARCHITECTURE

CONCEPTUAL STUDY. VOLUME I: ARMY

FAULT TOLERANT ARCHITECTURE

OVERVIEW (DFaper (Charles Stark)

Lab.) 140 p G3/&2

o

N92-33100

Unc|as

0116471

Z- _ •

This page intentionally left blank.

Page ii

Executive Summary

Digital computing systems needed for Army programs such as the Computer-Aided
Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM)
vehicles may be characterized by high computational throughput and input/output band-
width, hard real-time response, high reliability and availability, and maintainability, testa-
bility, and producibility requirements. In addition, such a system should be affordable to
produce, procure, maintain, and upgrade.

To address these needs the Army Fault Tolerant Architecture (Ab-TA) is being designed
and constructed under a three-year program comprising the Conceptual Study, Detailed
Design and Fabrication, and Demonstration and Validation phases. This report describes

the results of the Conceptual Study phase of the AFTA development. The scope of the
Conceptual Study was quite broad and covered topics ranging from mission requirements
to architectural synthesis and analysis to life cycle cost modeling.

AFTA is a militarized version of the Fault Tolerant Parallel Processor (FTPP) devel-

oped by the Charles Stark Draper Laboratory, Inc. AFTA is a hard-real-time Byzantine re-
silient parallel processor which is programmed in the Ada language. It supports testability
and redundancy management strategies which permit the dynamic reconfiguration of pro-
cessing sites to enhance sortie availability and mission reliability. It is composed largely of

Non-Developmental Items to reduce the development risk and cost and to facilitate up-
grades. Extensive analytical models and predictive verification and validation techniques
are provided with Ab'TA to allow application designers to engineer a configuration for spe-

cific missions with a high degree of confidence that the fielded configuration will meet the
mission requirements. As a part of AFTA, a fault tolerant data bus (FTDB) is being devel-
oped to provide a highly reliable, fault tolerant networking system between AFTA and
other digital systems. The conceptual design of the FTDB covers many aspects of network
design, including media technology, media access control, topology, routing, OSI protocol
stacks, and fault detection and recovery. In addition to these traditional network topics, the
FTDB also encompasses techniques from the area of fault-tolerance, including Byzantine
resilience and authentication protocols.

AFrA's architectural theory of operation, the AFTA hardware architecture and compo-

nents, and the architecture of the AFlrA Operating System have been defined during the
Conceptual Study, as well as a test and maintenance strategy for use in fielded AFTA in-
stallations. A format has been developed for representing mission requirements in a man-
ner suitable for first-order AITFA sizing and analysis. Preliminary requirements have been

obtained for two Army missions: a rotary winged aircraft mission and a ground vehicle
mission. An approach to be used in reducing the probability of AFTA failure due to com-
mon-mode faults has been developed, as have analytical models for AFTA performance,

reliability, availability, life cycle cost, weight, power, and volume. A plan has been devel-
oped for verifying and validating key Ab-TA concepts during the Dem/Val phase, especially
those which cannot be cost-effectively validated by accelerated life cycle testing. The ana-

lytical models and partial Army mission requirements developed under the Conceptual
Study have been used to evaluate AFTA configurations for the two selected Army mis-
sions. To assist in documentation and reprocurement of AFTA components, VHDL is
used to describe and design AFTA's developmental hardware. Finally, the requirements,
architecture, and operational theory of the AFTA Fault Tolerant Data Bus have been defined
and described.

The next phase of the development has begun and will result in a Brassboard AFTA for
demonstration and validation.

Page iii

' PRECEDING PAGE BLANK NOT FILMED

This page intentionally left blank.

Page iv

__ _-

Table of Contents

Executive Summary ... iii
Table of Contents ... v

List of Figures, .. vii
List of Tables ... ix
Introduction to Volumes I and lI ... xi

1. Introduction -.,.,....,.,..,.,._....-_r._..,. 1-1
1.1. Long-Term AFTA Development Plan ... 1-2

1. I.I. AFTA Reliability Growth ... 1-3
1.1.2. AFTA Producibility .. 1-5

1.1.2.1. NDI Components I-5
1.1.2.2. Network Element 1-5
1.1.2.3. Software .. 1-7

1.1.3. Transition from AFTA Brassboar d to Deployable AFTA 1-7
1.1.3.1. Network Element .. 1-7

1.1.3.2. Operating System 1-8
1.1.4. Digital Representation of AFTA Documentation 1-8

1.2. Conceptual Study 1-9
1.3. AFTA Brassboard Demonstration and Validation 1-13

1.3.1. Detailed Design ... 1-13
1.3.2. Fabrication, Integration. Validation .. 1-14

1.4. Documents Used and Generated Under This Contract 1-17

2. Requirements Definition and Acquisition .. 2-1
2.1. Functional Requirements .. 2-1
2.2. TF/TA/NOE Mission .. 2-2

2.2.1. Functional Description .. 2-2
2.2.2. Operational Scenario ,. .. 2-7
2.2.3. Real-Time Constraints ... 2-9

2.3. Ground Vehicle Mission .. 2-10

2.3.1. Functional Description ... 2-10
2.3.2. Operational Scenario ... 2-10
2.3.3. Real-Time Constraints .. 2-12

2.3.4. SAVA Standard Compliance ...,, .. 2-12
2.4. Status of Requirements Acquisition _.......... 2-12
2.5. Computational Performance ,...., 2-12

2.6. Reliability and Availability .. 2-14
2.6.1. Sortie Availability .. 2-15
2.6.2. Mission Reliability .. 2-15
2.6.3. Vehicle Reliability .. 2-15
2.6.4. AFTA Reliability Formulation Approach 2-15
2.6.5. Function Reliability :, ... 2-16

2.7. TestabilityV.... ;,.... ;. ; 2-17
2.8. Maintainability ;.., 2-17

3. AFTA Overview ,., , 3-1
3.1. Byzantine Resilience Approach to Fault Tolerance 3-3
3.2. Physical Architecture .. 3-8
3.3. Virtual Architecture 3-11
3.4. Communication Mechanisms ... 3-12

3.4.1. Voted Messages .. 3-13
3.4.2. Source Congruency Messages ... 3-15

PR,EGEDING PAGE BLAiqK NC-'I FILMED

Page v

3.4.3. Synchronization Message ... 3-18

3.4.4. Configuration Update Message .. 3-18
3.4.5. Synchronization .. 3-18
3.4.6. Byzantine Resilient Virtual Circuit Abstraction 3-22
3.4.7. Scooping .. 3-23
3.4.8. Input/Output Redundancy Management 3-24

3.4.8. I. Input Procedures .. 3-26
3.4.8.1.1. Case 1: Dumb IOC, Simplex Source in same FCR as IOC,

Simplex Destination (same as source) 3-26
3.4.8.1.2. Case 2: Dumb IOC, Simplex Source in same FCR as IOC,

Simplex Destination (different from source) 3-27
3.4.8.1.3. Case 3: Dumb IOC, Simplex Source in same FCR as IOC,

Triplex Destination .. 3-29
3.4.8.1.4. Case 4: Dumb IOC, Simplex Source in same FCR as IOC,

Broadcast Destination .. 3-31

3.4.8.1.5. Case 5: Dumb IOC, Triplex Source in same FCR as IOC,
Triplex Destination ... 3-33

3.4.8.1.6. Case 6: Dumb IOC, Simultaneous Input Reads by Triplex,
Triplex Destination ... 3-35

3.4.8.2. Output Procedures ... 3-40
3.4.8.2.1. Case 1: Simplex Source VG, Simplex IO(2 in same FCR as

source VG ... 3-40

3.4.8.2.2. Case 2: Redundant Source VG, Simplex IOC in same FCR
as one of VG Members, Unvoted Output Data 3-41

3.4.8.2.3. Case 3: Redundant Source VG, Simplex IOC in same FCR
as one of VG Members, Voted Output Data 3-42

3.4.8.2.4. Case 4: Redundant Source VG, Redundant IOC in same
FCR as one of VG Members, Unvoted Output Data 3-44

3.4.8.2.5. Case 5: Redundant Source VG, Redundant IOC in same
FCR as one of VG Members, Voted Output Data 3-45

3.5. Operating System Architecture ... 3-46
3.5.1. Scheduling .. 3-47

3.5.1.1. Definitions .. 3-47

3.5.1.2. Requirements for Hard Real-Time Schedulers 3-49
3.5.1.3. Related Work .. 3-49

3.5.1.3.1. Rate Monotonic Scheduling ... 3-49
3°5.1.3.2. MARS (MAintainable Real-time System) 3-50
3.5.1.3.3. IAPSA ... 3-51

3.5.1.3.4. Reliable Computing Platform ... 3-51
3.5.1.3.5. NASA Space Transportation System General Purpose

Computer .. 3-52
3.5.1.4. AFTA RG Scheduler Overview ... 3-53

3.5.1.4.1. Intertask Communication .. 3-55
3.5.1.4.2. Overview of Minor Frame .. 3-56

3.5.1.4.3. Preemptive Rate Group Scheduling 3-57
3.5.1.4.4. Aperiodic Hard Real-Time Task Scheduling 3-65
3.5.1.4.5. Aperiodic Non-Real-Time Task Scheduling 3-67
3.5.1.4.6. Execution of RGs on Multiple VGs 3-67

3.5.2. Fault Detection, Identification and Recovery Overview 3-69

3.5.3. Input/Output Services ... 3-71
3.6. The Role of Standards in the AFTA ... 3-72

3.7. Relationship of AFTA to the Advanced Information Processing System 3-72

Appendix A. References .. A-1

Appendix B. Glossary of Terms and Acronyms.. ... B-1

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure

l°l.

1-2.
1-3.
2-1.
2-2.
2-3.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.

3-7.

3-8.
3-9.

3-10.

3-11.

3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.

3-19.
3-20.
3-21.

3-22.
3-23.
3-24.

3-25.
3-26.
3-27.

3-28.

List of Figures

Near-Term Schedule for the AFTA Program 1-10
AFTA Conceptual Study Schedule _......... 1-14
AFrA Dem/Val Schedule ... 1-18

Functional Allocation to AFTA for Helicopter TF/TA/NOE/FCS 2-3
Helicopter TF/TA/NOE Mission Scenario State Diagram 2-8
Ground Vehicle Mission Scenario ... 2-11
AFTA Abstract Structure ... 3-3
FTPP Cluster Architecture .. 3-9

FrPP Cluster Architecture - Sample Configuration 3-10
FI'PP Sample Configuration Table .. 3-11
FTPP Virtual Configuration .. 3-12
Triplex Sender Delivers Class 1 Message x to Network Elements
for Transmission ... 3-14

Network Elements Perform Mutual Broadcast of Class I Message 3-14
Network Elements Vote and l__Jiver Class 1 Message 3-15
Simplex Sender Delivers Class 2 Message x to Network Elements
for Transmission ... 3-17

Network Element B Performs Initial Broadcast of Class 2

Messageii.i:i_i_...,..._..i 3-17
Network Elements Perform Mutual Broadcast of "Reflected" Class
2 Message .. 3-18
Functional Synchronization .. 3-21
Byzantine Resilient Virtual Circuit Abstraction 3-23
Scooping a Message ... 3-24
Steps 1 and 2 - S 1 Accesses lOCI to Read Input Data 3-26
Steps 1 and 2 - S I Accesses lOCI to Read Input Data 3-27
Step 3 - S 1 Performs Class 2 Exchange, Rounds 1 and 2 3-28
Step 3 - S 1 Performs Class 2 Exchange, Delivery of Input Data to
$9 .. 3-28

Steps 1 and 2 - S1 Accesses lOCI to Read Input Data 3-29
Step 3 - S 1 Performs Class 2 Exchange, Rounds 1 and 2 3-30
Step 3 - S 1 Performs Class 2 Exchange, Delivery of Input Data to
T 1 .. 3-30

Steps 1 and 2 - SI Accesses IOC1 to Read Input Data 3-31
Step 3 - S 1 Performs Class 2 Exchange, Rounds 1 and 2 3-32
Step 3 - S 1 Performs Class 2 Exchange to Deliver Input Data to
All VGs ... 3-32

Steps 1 and 2 - T1 on NE0 Accesses lOCI to Read Input Data 3-33
Step 3 - T1 Performs Class 2 Exchange, Rounds 1 and 2 3-34
Step 3 - T1 Performs Class 2 Exchange, Delivery of Input Data to
T 1 .. 3 -34

Steps 1 and 2 - Members of T1 on NE0, 1, and 3 Simultaneously
Access lOCI, IOC2, and IOC4 to Read Input Data 3-36
Step 3 - T1 on NE0 Performs Class 2 Exchange Phases 1 and 2 3-36
Step 3 - T1 on NE0 Performs Class 2 Exchange, Delivery of
Input Data to TI .. 3-37
Step 4 - T1 on NE1 Performs Class 2 Exchange Phases 1 and 2 3-37
Step 4 - TI on NE1 Performs Class 2 Exchange, Delivery of
Input Data to T1 .. 3-38

Page vii

Figure
Figure

Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure
Figure

Figure

3-35.
3-36.
3-37.
3-38.

3-39.

3-40.

3-43.

3-44.

3-45.
3-46.
3-47.
3-48.
3-49.
3-50.
3-51.
3-52.

3-53.

3-54.
3-55.
3-56.
3-57.

3-58.

Step 5 - T1 on NE3 Performs Class 2 Exchange Phases 1 and 2 3-38

Step 5 - T1 on NE3 Performs Class 2 Exchange, Delivery of
Input Data to T1 .. 3-39
Simplex VG $9 Writes Output Data to Simplex IOC4 3-40
Triplex VG T! Writes Unvoted Output Data to IOC4 3-41
Step 1 - Triplex VG TI Votes Output Data, Phases 1 and 2 3-42
Step 1 - Triplex VG TI Votes Output Data, Delivery of Voted
Data to T1 ... 3-43

Step 2 - Triplex VG TI on NE3 Writes Voted Output Data to
IOC4 3-43

Redundant Source VG Simultaneously Writes Unvoted Output
Data to Multiple IOCs, _.., 3-44
Step 1 - Triplex VG TI Votes Output Data, Phases 1 and 2 3-45
Step 1 - Triplex VG TI Votes Output Data, Delivery of Voted
Data to TI ... 3-46

Redundant Source VG Simultaneously Writes Voted Output Data
to Multiple IOCs ... 3-46
Rate Group Frame - Programming Model 3-54
Architecture of RG Frames on a Single VG 3-55
Overview of Minor Frame .. 3-57

Rate Group Schedule - Dispatcher Task Only 3-58
Rate Group Schedule - Dispatcher+FDIR Tasks 3-59
Rate Group Schedule - Dispatcher+FDIR + R4 Tasks 3-60
Rate Group Schedule - Dispatcher+FDIR + R4 +R3 Tasks 3-61
Rate Group Schedule - Dispatcher+FDIR + R4 +R3 +R2 Tasks 3-62
Rate Group Schedule - Dispatcher+FDIR + R4 +R3 +R2 +R1
Tasks .. 3-63

Rate Group Schedule - Dispatcher+FDIR + R4 +R3 +R2 +R1 +
Background Tasks ... 3-64

Scheduling of Event-Triggered Hard Real-Time Aperiodic Tasks 3-66
Phasing of RG Frames on Multiple VGs 3-69
System mode and test mode interactions 3-70
The Advanced Information Processing System Engineering
Model ... 3-74
Interface Between Abq"A and the Advanced Information

Processing System Engineering Model 3-75

Page viii

List of Tables

Table 2-1.
Table 2-2.
Table 3-1.

Execution Times for Dynaplan Automatic Route Planner 2-5
Helicopter TF/TA/NOE/FCS Requirements Summary 2-6
Maximum Event Response Latency vs. Rate Group 3-65

Page ix

Thispageintentionallyleft blank.

Pagex

Introduction to Volumes I and II

The long-term objective of the AFTA programis to develop and deploy the Army Fault

Tolerant Architecture (AFTA) on a variety of Army programs such as the Computer-Aided

Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM)

vehicles. Applications such as these may be cl_aractedzed by a combination of computa-

tional intensiveness, real-time response requirements, high reliability and availability re-

quirements, and maintainability, testability, and producibility requirements.

The AFTA architecture is based on the Charles Stark Draper Laboratory, Inc. Fault

Tolerant Parallel Processor (FTPP). AFTA is a real-time computer possessing high relia-

bility, maintainability, availability, testability, and computational capability. It achieves the

first four properties primarily through adherence to a theoretically rigorous theory of fault

tolerance known as Byzantine Resilience, through which arbitrary failure modes can be tol-

erated. It is designed for verifiability and quantifiability of key system attributes with a

high degree of confidence, in part due to its theoretically sound basis and in part due to

plausible parameterizations of fault tolerance and Operating System overheads. Through

the use of parallel processing, AFTA achieves sufficient throughput for future integrated

avionics and control functions. To be useful for a variety of Army applications, the num-

ber and redundancy level of processing sites in AFTA may be varied from one application

to another, and AFTA is programmed in the DoD=mandated Ada language. AFTA is in-

tended to be relatively easy to produce and upgrade through extensive use of Non Devel-

opmental Items and compliance with well-accepted electrical, mechanical, and functional

standards.

Over the past few years NASA and the Strategic Defense Initiative Office (SDIO) have

sponsored the Advanced Information Processing System (AIPS) program at Draper Labo-

ratory. The overall goal of the AIPS program is to produce the knowledgebase necessary
r

to achieve validated distributed fault tolerant computer system architectures for advanced

real-time aerospace applications [Har91 b]. As a part of this effort, an AIPS engineering

model consisting of hardware building blocks such as Fault Tolerant Processors and Inter-

Computer (IC) and Input/Output (I/O) networks and software building blocks such as Lo-

cal System Services, IC and I/O Communications Services was constructed. AFTA can be

considered to be a high-throughput AIPS building block which can be interfaced to the

AIPS IC network. Section 3.7 describes the AIPS engineering model in more detail and

illustrates how it can be interfaced with AFTA.

PRECEDING PAGE BLANK NOT FILMED

Page xi

This reportdescribestheresultsof theConceptualStudyphaseof theAFTA develop-

ment,andconsistsof fourteensectionsin two volumes.VolumeI is introductoryin nature

andcontainsSections1through3. Section1introducestheAFTA program,itsobjectives,

and key elementsof its technicalapproach.Section2 definesa format for representing

missionrequirementsin a mannersuitablefor first-orderAFTA sizingand analysis,fol-

lowedby adiscussionof thecurrentstateof missionrequirementsacquisitionfor the tar-

getedArmy missions. Section3 presentsanoverviewof AFTA's architecturaltheoryof

operation.

VolumeII containsdetailedtechnicalinformationandanalysesin Sections4 through

14. Section4 describestheAFTA hardwarearchitectureandcomponents,andSection5

describesthearchitectureof theAFTA OperatingSystem.Section6describesthearchitec-

tureandoperationaltheoryof theAFTA Fault Tolerant Data Bus. Section 7 presents the

test and maintenance strategy developed for use in fielded AFTA installations. Section 8

describes an approach to be used in reducing the probability of AFTA failure due to com-

mon-mode faults. Section 9 develops analytical models for AFTA performance, reliability,

availability, life cycle cost, weight, power, and volume. Section 10 presents the approach

for using VHDL to describe and design AFTA's developmental hardware. Section 11 de-

scribes a plan for verifying and validating key AFTA concepts during the Dem/Val phase,

and Section 12 utilizes the analytical models and partial mission requirements to generate

AFTA configurations for the TF/TA/NOE and Ground Vehicle missions. References are

contained in Section 13, and a glossary of terms and acronyms is included in Section 14.

Because some readers may wish only to read individual volumes, Volumes I and II

contain some redundant information.

Page xii

1. Introduction

1.1. Long-Term AFTA Development Plan

To achieve the AFTA program's long-term objective requires a multi-phased product

development, production, and support cycle. A u_ful model for AFTA's development and

deployment cycle is based on that found in MIL-STD-785B, "Reliability Program for Sys-

tems and Equipment Development and Production" [MIL-STD-785B].

First, a Conceptual Study phase is performed to ascertain the requirements of antici-

pated applications and develop concepts suitable for those applications. Quantitative for-

mulations are developed for critical parameters such as performance, reliability, etc., appro-

priate to the level of detail available from the requirements and the proposed architectural

concepts. Deliverables of this phase include a document describing the application re-

quirements, the structure and operational theory of the proposed conceptual solution, ana-

lytical models and results used in evaluating the architecture, plans for evaluating and veri-

fying the analytical predictions, and plans for further development phases. This documen-

tation is provided both in hardcopy and digital format.

Next, a Demonstration and Validation (Dem/Val) phase is executed, in which the candi-

date solution is refined through extensive study and analysis, hardware development, test,

and evaluation. In the AFTA program, a prototype of the architecture is designed and con-

structed from commercially available hardware, and is denoted the AFTA Brassboard.

This prototype serves as a testbed for evaluation and improvement of the architectural con-

cept, increases confidence in the viability of the architecture, provides information regard-

ing the interaction of system components, and corroborates preliminary analytical and

functional models. In the Dem/Val phase, the verifiable attributes of the Brassboard are in-

vestigated according to the verification plan described in Section 11 of this report, and a

preliminary Failure Modes and Effects and Criticality Analysis (FMECA) is performed to

identify reliability bottlenecks needing attention. The analyses produced under the Concep-

tual Study phase are refined based on detailed design and empirical data obtained from the

Dem/Val phase, and a Full Scale Development plan is constructed. If deployable Non De-

velopmental Items are available for use in the Brassboard, Reliability Development/Growth

Testing for these items may be initiated. Deliverables of this phase include one or more

copies of the Brassboard, detailed design information such as mechanical drawings, parts

lists, schematics, timing analyses, data and control flow diagrams, Interface Control Doe-

Page 1-1

uments,VHDL, ADA, andAssemblersource code, hardware and software documentation,

test and evaluation results, refined analytical models, the FMECA, and user/programmer

guides. The documentation is provided both in hardcopy and digital format.

Upon satisfactory demonstration, validation, and refinement of the architectural con-

cept, the Full Scale Development phase (FSD) is entered, during which the system and the

principal items necessary for its support are designed, fabricated, tested, and evaluated.

The FSD phase begins with the construction of numerous plans. These include Engi-

neering Development Model (EDM) fabrication, incoming/outgoing Quality Assurance,

Environmental Stress Screening (ESS), Reliability Development/Growth Testing (RDGT),

Failure Reporting And Corrective Action, Validation and Verification, Full-Scale Produc-

tion (FSP), logistics, Pre-Planned Product Improvement (P3I), and maintenance plans. A

detailed Failure Modes and Effects and Criticality Analysis (FMECA) is performed to iden-

tify AFTA reliability bottlenecks. Production acceptance tests such as the Production Reli-

ability Acceptance Test are defined. The Preliminary Design Review, Critical Design Re-

view, and Production Readiness Review are scheduled. Deliverables from the FSD plan-

ning phase include the plans and schedule outlined above in hardcopy and digital format.

Upon satisfactory completion of the FSD plans, fabrication of the EDM begins. The EDM

is as far as possible identical to systems planned for Full Scale Production (FSP); for

AFTA, it is constructed of military-qualified components in packages and form factors suit-

able for installation in the vehicles of interest. The EDM is used to verify the producibility

of AFTA, undergo ESS and RDGT, and refine quantitative predictive models of AFTA at-

tributes. Deliverables from the EDM phase include one or more EDM copies, detailed

EDM engineering documentation, the FMECA, results from the ESS and RDGT, and Vali-

dation and Verification results.

After EDM testing and acquisition of detailed application requirements, the architecture

is ready for Full Scale Production (FSP), in which units intended for use in one or more

deployments are produced in quantity. While in use in the field, all systems (even AFTA)

suffer faults and require continual maintenance, spares, and associated logistics support.

During production and deployment a Failure Reporting And Corrective Action plan is ex-

ercised to identify failure modes, trace them back to weak components, and, if possible,

modify the design, parts, and/or fabrication process to eliminate them. Over the AFTA's

fielded life, Pre-Planned Product Improvements (p3I) may be implemented to increase

system capabilities, increase reliability]availability, and reduce support costs. It is generally

expected that the field support costs will far exceed all other development and procurement

Page 1-2

costs.Finally, all systems(evenAFTA) becomeobsoletewith time,enterold ageandare

replacedwith newertechnology.

1.1.1. AFTA Reliability Growth

Under the AFTA Conceptual Study CSDL was directed to present a Reliability Growth

Plan (RGP) for the AFTA development project. While it may appear premature to address

such long-term issues as the Reliability Growth Plan, producibility, maintainability, and

Life Cycle Costs (LCC) in the Conceptual Study phase of a development, decisions made

in early phases of a program can have such a far'reaching impact on these long-term LCC

drivers that they must be considered at the outset.

Product reliability growth occurs during the FSD phase as well as during the opera-

tional life cycle of the system. Under a RGP as described in MIL-HDBK-189 and MIL-

STD-78 ID, a reliability growth curve is constructed consisting of quantitative reliability

milestones and associated dates. A plan is constructed for achieving these milestones based

on prior experience on similar programs and quantitative predictions.

Reliability growth for AFTA comes from a number of sources. First come increases in

basic hardware component reliability. For AFTA, these components include the PEs, NEs,

IOCs, PCs, backplane, enclosure, and various connectors. Component reliability increases

come about through a standard program of Test, Analyze, and Fix (TAAF) and Environ-

mental Stress Screening (ESS), in which the components are put through temperature,

voltage, vibration, humidity, and other environmental conditions, suitably intensified to in-

duce failures at a temporally accelerated rate. The induced failure modes are analyzed and

their sources rectified via reengineering. This process continues until the reliability of the

component meets or exceeds the milestone value, or the target value is found to be impos-

sible to reach within a reasonable amount of time and money. This expensive and time-

consuming process has presumably already been performed for the Non-Developmental

Item (NDI) AFTA components. Therefore only the AFTA NEs will have to be subjected to

TAAF and ESS.

Increases in AFTA reliability also come about via the insertion of reliability-enhancing

technology such as VHSIC/VLSI, advanced cooling and packaging technologies, etc. into

the components. These insertions can be foreseen and their effects included into the relia-

bility growth plan as well. For example, in Section 9 of this report it is estimated that the

use of VHSIC/VLSI packaging for the AFTA Network Element can increase its MTBF by

over 60 percent, when compared to an implementation which uses minimal VHSIC/VLSI

Page 1-3

technology. This MTBF increase is shown in Section 12 to translate into a 30 to 70 percent

reduction in the probability of catastrophic AFI'A failure during the course of a one-hour

rotary wing aircraft mission. Note that the reliability growth plan extends into the fielded

life of the system via analysis and rectification of field failures, and via p3Is. The AFTA

RGP will indicate the anticipated reliability improvement for each major AFTA hardware

component.

The next major area of reliability growth occurs in the AFTA Operating System and

application software. A program similar to TAAF is used to detect and rectify software er-

rors, although no one has yet found a way to accelerate the arrival rate of software failures

by heating up and shaking the computer (although we sometimes want to!). The OS will

be stressed by performing fault and error injections, varying the number of tasks over the

entire declared range, performing intensive intertask communication and I/O, and subject-

ing the system to other stressing scenarios to be defined as the system functionality

evolves. Software functions will be tested over their nominal range of inputs as well as at

range boundaries, and multiple software functions will be stressed simultaneously in an

integrated test program, within time and funding limitations. In addition, advanced soft-

ware development and analysis technologies such as Computer Aided Software

Engineering (CASE) and formal specification and verification methods play roles analo-

gous to VHSIC/VLSI in increasing the reliability of new software and upgrades to old soft-

ware. The RGP will indicate the anticipated reliability growth of the AFTA operating sys-

tem and application software.

Planned improvements in component and software reliability have a direct mapping

onto AFTA system reliability, availability, and LCC via the analytical models presented in

this report. Through these models the RGP indicates the effect of the reliability improve-

ments in hardware and software components on the overall AFTA reliability and availabil-

ity. This can only be done through the analytical models presented in Section 9, since the

reliability and availability of AFTA in its redundant configurations are expected to be suffi-

ciendy high that direct measurement of overall AFTA reliability and availability are likely to

be unobtainable within a cost-effective reliability growth program. This in turn mandates

that cost-effective means for verifying the meaningfulness of reliability and availability

predictions be considered at the outset of the development.

Page 1-4

1.1.2. AFFA Producibili _ty

In formulating the conceptual design and Brassboard for AFTA, consideration must be

given to the ease of producing, operating, and upgrading the fielded system. Producibility

is a qualitative term which refers to the ease and cost-effectiveness with which the system

can be deployed, supported, and upgraded. Simply stated, systems which are overly ex-

pensive to procure and support will probably not be deployed. It is an objective of this

program to design AFTA to be producible.

1.1.2.1. NDI Components

One contribution to Ab'TA producibility is the use of standard interfaces to interconnect

its components. An example is the use of a standard bus, such as MIL-STD-344 (SAVA),

88-VHSIC-IBM-00066 (Pl-bus), and IEEE P1014/D1.2 (VMEbus), to interconnect the

components (including the NE) inside an AFTA, allowing the use of Non Developmental

Items (NDIs) such as processors, memories, I/O interfaces, power supplies, and other

components in AFI'A. NDIs are mature, tested components which are available in volume

because of their use on other programs: one may presume that NDIs have fewer design er-

rors and component frailties than new developmental items, are cheaper because of mass

production, and are more producible since their producibility problems would have been

ironed out before use in the AIZTA program. Replacement and upgrade of these items with

other NDI components with improved performance or other characteristics is simplified, as

long as the new components comply with the standard bus specifications. Multi-sourced

NDIs will be preferentially used in AFTA. As a safeguard against the demise of a sole-

source NDI supplier, one proposed approach to ensuring NDI component availability over

the long term is to come to agreement with an NDI vendor to keep all detailed design data in

an escrow account; should the company ever go out of business the data will be available to

the military for reprocurement from another vendor.

1.I.2.2. Network Element

The only module which must be specially developed for AFFA is the Network Ele-

ment. Logical design of the Network Element is performed during the Detailed Design

phase of the AFTA development. The design is also described by a VHDL behavioral

model. Depending on the implementation technology of the Brassboard and the FSD

AFTA, structural VHDL models may be generated as well. While expression in VHDL

does not guarantee technology-independence, it is expected that such a representation will

enhance the AFTA NE's producibility and reprocurement; the amount of work involved in

Page 1-5

reprocurementis a function of how muchthereprocurementtechnologydiffers from the

initial implementationtechnology(seeSection10for details).

The Brassboard NE will contain a mixture of Surface Mount Technology (SMT) and

through-hole packages. Plastic packages have the advantage of low cost and widespread

availability, but are not hermetic and are therefore unsuited for hostile military environ-

ments. Reference [MIL-HDBK-217E] states that "nonhermetic parts should only be used

in controlled environments (e.g., ground benign or ground fixed environments)."

Therefore only ceramic parts will be used in the deployed AFTA NE. Mixed SMT/thru-

hole parts have posed a slight problem for automated fabrication in the past because of the

dual passes required through the soldering system, but it is felt that near-term advances in

fabrication technology will overcome these problems [Biv88]. Many desirable NE parts

are available in ceramic Leadless Chip Carder (LCC) packages; however, to achieve

matched thermal expansion characteristics between a ceramic LCC device and the circuit

board requires the use of ceramic boards, which are expensive. Therefore LCCs and ce-

ramic boards will be avoided in the AFTA NE. Other desirable NE parts are available in

Pin Grid Array (PGA) packages. Repair of PGA devices can be difficult without the

proper equipment (namely hot-air soldering stations) because of the large number of pins to

be unsoldered and resoldered. It is expected that the emerging prevalence of hot air stations

will decrease this concern over time, so PGA packages will be used in the AFTA NE.

The AFTA NE circuit board will be composed of polyimide with Copper traces. Ac-

cording to CSDL producibility engineers, polyimide provides better Copper trace adhesion

than FR-4, and hence more durability and more repair cycles before pads and traces lift due

to repeated solder cycles. Up to 16 signal layers are easily producible on polyimide boards;

current generation NEs require only 6 layers (one power, one ground, and four signal lay-

ers), and it is unlikely that the AFTA NE will require more. Given a surfeit of layers, the

NE can be designed for enhanced electrical and other characteristics. For example, signals

that drive edge-sensitive inputs can be routed on a dedicated plane sandwiched between

power and ground planes to prevent crosstalk and glitches. If radiation hardness ever be-

comes an issue, the top and bottom layers of the board can contain pads only, thus provid-

ing some shielding of the traces. Existing NEs reside on PC boards having 10 mil traces

with 10 mil spacing; this geometry is easily producible with current printed circuit card

technology. Since the fielded AFI'A NE will be conduction cooled, a thermal management

layer will be required. These layers have not been a producibility problem in the past, and

can be easily formed from ground and power planes on one or more of the available signal

layers.

_age'l'-6

1.1.2.3. Software

Discussions on producibility tend to focus on hardware; however, it is well known that

software often dominates system life-cycle costs. Thus software producibility is at least as

important as hardware producibility. The AFTA is designed to enhance software pro-

ducibility through its use of the military-mandated Ada High Level Language (HLL). If

Ada application code is written conservatively within the guidelines of the Ada Language

Reference Manual [MIL-STD-1815], that code should be portable from one type of Pro-

cessing Element to another, allowing the upgrade of AFTA PEs - possibly even changing a

PE's Instruction Set Architecture (ISA) - without a major redesign of the code (some

tweaking will always be necessary). In addition, the AFTA Ada application programming

model is designed to be independent of the number of PEs in AFTA, the mapping of Ada

tasks to PEs, or the redundancy level of a processing site. The user only specifies task-to-

task communication via asynchronous message passing primitives, relying on the underly-

ing AF_A Operating System to deliver the message to the appropriate destination task on

the appropriate destination processing site(s). This transparency of task execution locale

allows AFTA to be upgraded via the addition of PEs, or the redundancy level of processing

sites to be changed, without affecting the fundamental data and control flow of an Ada ap-

plication. In the case of repartitioning of the application code, the mapping of the reparti-

tioned application to the modified AFTA must of course be generated and validated. To in-

crease OS producibility, maintainability, and upgradeability, the OS is modularized such

that the PE, NE, backplane bus, compiler, and kernal dependencies are well documented;

where possible, the source code is modularized with respect to these dependencies as well.

1_1.3. Transition from AFTA Brassboard to Deployable AFTA

1.1.3.1. Network Element

For reasons of cost the Brassboard NE will be constructed of commercially available

components. To transition the design to FSD, it must be militarized. This transition can be

made relatively painlessly if it is planned for in the Conceptual Study and Brassboard De-

tailed Design phases. For example, the Brassboard NE will be designed to be compatible

with MIL-STD-344, "Standard Army Vetronics Architecture." Conversion of the Brass-

board design to a 344-compatible design will require no change in the NE's form factor,

architecture, logic design, thermal characteristics, or electrical characteristics, thus facilitat-

ing this aspect of its militarization. The microelectronic devices comprising the NE must be

militarized as well. This will be facilitated by the use in the Brassboard NE of circuits

Page i-27-

which areon MIL-STD-38510 slashsheetsor StandardMilitary Drawings(SMDs). In

addition,theNE's circuit timing analysiswill becardedout overtheentireMilitary tem-

peraturerangeof-55C to +125Ctoensurethattheelectricaldesignwill functionoverthese
temperatureextremes.ApplicationSpecificIntegratedCircuits(ASICs)usedin themilita-

rized AFTA will be implementedby constructingstructuralVHDL descriptionsfrom the

existingBrassboardAFTA VHDL behavioralmodels,andfeedingthestructuraldescrip-
tions throughlogic synthesis,placement,androuting software.During ASIC fabrication

theASICs must be put through the MIL-STD-883C military qualification process before

use in the deployed AFTA.

1.1.3.2. Operating System

The militarization of the AFTA Operating System is primarily an issue of how much the

modules in the militarized AFTA differ from those employed in the Brassboard AFTA. For

this reason, it is preferred to identify, obtain, and use the same or similar modules in both

systems. This should be possible since all modules except the AFTA NE are NDI, and

these items can be judiciously selected to have militarized equivalents. Failing that, it is

preferential to modularize the OS to allow the easy identification and modification of soft-

ware modules which depend on specific module architectures.

L 1A_ Distal Representation of AFTA Documentation

Digital computers will be heavily used in the design, fabrication, and documentation of

the AFTA hardware and software. The resultant digital representation of the AFTA docu-

mentation will be provided to the Army and form the basis of a support, logistics, and

maintenance digital database according to the Computer-Aided Acquisition and Logistic

Support (CALS) Program Implementation Guide [MIL-HDBK-59].

The following computer platforms and software packages are being used for the con-

struction of the AFTA Brassboard. CSDL will provide all data generated using these tools

to the Army. In addition, most of the data can be converted to a digital format suitable for

use by the Army's existing computer platforms and software packages, although in some

cases significant loss of formatting information will occur.

General-purpose word and graphics processing are performed on the Apple Macin-

tosh® using the Microsoft Word® and Apple MacDraw® packages, respectively. In addi-

tion to these packages, StructSoft TurboCASE® and MacFlow® are used to represent the

AFTA Operating System requirements specification and detailed design. For tracking and

Page 1-8

plotting data such as parts lists, budgets, reliability, weight, power, volume, etc., the Mi-

crosoft Excel® spreadsheet package is used. The design of the Network Element is devel-

oped using the Designworks® software package, and its smaller programmable logic de-

vices are programmed using the Abel® package.

A Sun workstation is used to host the Vantage VHDL Spreadsheet® software package.

The Sun C compiler is used for developing non-deliverable Network Element hardware test

code. The Emacs editor is used as a general-purpose editor.

The XDAda® compiler for AFTA resides under the DEC VAX/VMS® environment.

In addition, the DEC CMS® program is used as a basis for software configuration man-

agement. The DEC FORTRAN compiler is used for AFTA reliability, availability, and cost

modeling. Either the DEC EDT® editor or the Emacs editor are available as a general-pur-

pose editor on this platform.

The Altera MAXPLUS® software package for programming Field Programmable Gate

Arrays (FleAs) is hosted on an IBM PC or compatible.

The Conceptual Study and Dem/Val phases will now be discussed in chronological or-

der.

1.2. Conceptual Study

The near-term objective of the AFTA program is to demonstrate and evaluate the Army

Fault Tolerant Architecture (AFTA) Brassboard within the context of the Computer-Aided

Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM)

Program. The subject program consists of the first two phases in the product development

cycle discussed above, namely the Conceptual Study and the Brassboard Demonstra-

tion/3/alidation phases. These two phases are further partitioned into three separate sub-

tasks, each spanning one year:

Conceptual Study

Detailed Design

AFTA Brassboard Fabrication and Evaluation

The approximate schedule for these phases is given in Figure 1-1:

Page 1-9

....... Tasks

Conceptual

Study

Detailed

Design

Brassboard

Fabrication,

Integration,
Validation

GFY90

• CY90,_.

GFY91 ,,J

0Y91

I
;._...,_:

GFY92

CY92

GFY93
CY93 /

Figure 1-l. Near-Term Schedule for the AF'I'A Program

The current document describes the Conceptual Study phase of the AFTA program.

The Conceptual Study comprises the Requirements Definition, Requirements Acquisition,

Engineering Description, Analytical Modeling, Verification Plan, Architecture Configura-

tion, the C2 Loaner, and the Fault Tolerant Data Bus subtasks.

In the Requirements Definition phase, we define a format for requirements that the ap-

plication designer may place upon the computational system. Relevant requirements data

include reliability, maintainability, availability, testability (RMAT), performance require-

ments, operational environment, mission scenario, and maintenance strategy.

In the Requirements Acquisition phase, available data are obtained for the Army mis-

sions of interest from AVRADA, CECOM-C 3, and RAMECES. These requirements are

currently to be determined by the Computer-Aided Low Altitude Night Helicopter Flight

and the Ground Maneuver Systems Fault Tolerant Navigation Processor programs. For

brevity these applications are henceforth referred to as the "TF/TA/NOE" (for Terrain-Fol-

lowing/Terrain-Avoidance/Nap-of-the-Earth) and the "Ground Vehicle" applications, re-

spectively. The requirements are transformed if possible into the format defined in the Re-

quirements Definition phase.

In the Engineering Description phase, a detailed description is generated of the compo-

nents of AFrA and how they are assembled and operated. The engineering description is

sufficiently detailed to provide the analytical models with parameters such as throughput,

aPage 1-10

memory,intertaskcommunicationbandwidthandlatency,input/outputbandwidthandla-

tency,weight,power,size,volume,andcomponentfailure rateasafunction of thearchi-
tectureconfigurationchosenfor agivenArmy application.In addition, the engineering de-

scription provides details on how to develop software for AFTA and operational details on

fault tolerance and recovery schemes.

In the Analytical Modeling phase, analytical models are constructed to predict whether a

given AFTA configuration will meet the requirements as specified in the Requirements Ac-

quisition phase. These models are parameterized so as to be useful in estimating the char-

acteristics of the Brassboard as well as multiple deployable AFTA configurations.

The Verification Plan phase comprises the construction of a plan for demonstrating that

the analytical models predict system characteristics with reasonable accuracy. This plan is

executed in the Dem/Val phase.

In the Architecture Configuration phase, the AFTA architectural parameters are adjusted

to realize conceptual architectures for the two Army missions: the helicopter TFfFA/NOE

mission and the Ground Vehicle mission. The analytical models developed in the Analyti-

cal Modeling phase are used to predict AFTA reliability, availability, weight, power, vol-

ume, and Life Cycle Costs for these missions.

In the C2 loaner subtask, the FTPP Cluster 2 (C2) is to be delivered to AVRADA for

evaluation and familiarization with FTPP technology. The C2 is a quadruply redundant

uniprocessor version of the FTPP and hosts the same basic Ada Run Time System and

software development environment as AFTA. The AFTA software development environ-

ment is purchased and delivered to AVRADA in the Conceptual Study phase to jump start

the AFTA application software development process. In a related effort, the testability of

the C2 Network Element (NE) will be evaluated by writing and demonstrating self-test

software; the lessons learned from this exercise will be used to improve the testability of the

AFTA Network Element.

Common-mode faults are those which occur in more than one copy of a redundant

computation due to a common source. Thus, they can defeat redundancy-based fault toler-

ance techniques such as those used in AFTA. A methodology for detecting and recovering

from common-mode faults in AFTA will be developed. In addition, a plan for verifying

the effectiveness of the common-mode fault tolerance techniques comprising the methodol-

ogy will be formulated. In the event that application-specific information for the study is

Page 1-11

needed,thehelicopterTF/TA/NOE applicationwill beusedasacontextfor thecommon-

modefault tolerancestudy.

As a separate but related effort, a fault tolerant data bus (FTDB) is developed to provide

a fault tolerant networking system for AFTA and other digital systems, including the Sili-

con Graphics display processor, the Merit Technologies MT-1 VME system, the real-time

AI system, sensor and image processors, and flight and engine controls. The objective of

the fault-tolerant data bus effort is to provide highly reliable end-to-end communications

between the above systems. The conceptual design of the FTDB covers many aspects of

network design, including media technology, media access control, topology, routing, OSI

protocol stacks, and fault detection and recovery. In addition to these traditional network

topics, the FTDB also encompasses techniques from the area of fault-tolerance, including

Byzantine resilience and authentication protocols.

The schedulable work modules for the Conceptual Study phase of the AFTA develop-

ment are given below. The Subtasks in the parentheses refer to the Statement of Work

[NAS1-18565-14] items which the work modules address.

1. Requirements acquisition and interpretation. (Subtask 1)

2. Availability and reliability models. (Subtasks 2.D. 1, 2.D.3)

3. Cost model. (Subtask 6.D)

4. Weight, power, size/volume models (Subtask 2.E)

5. Performance models. (Subtask 3)

6. VHDL study. (Subtask 2.C)

7. Fault tolerant data bus study. (Subtask 2.B)

8. Fault tolerance and recovery options study. (Subtasks 2.A, 2.D.2,

2.D.3, 2.E)

9. AFTA verification plan. (Subtask 6.A, 6.B, 6.C)

10. Ab'TA architecture synthesis and analysis. (Subtasks 3,4)

11. FTPP Cluster 2 (C2) Operating System. (Subtask 5)

12. 02 delivery to AVRADA's hot bench. (Subtask 5)

13. AFTA software development system procurement. (Subtask 7)

14. Y'TPP 02 NE comprehensive self-test demonstration. (Subtask 9)

15. AFTA common-mode fault tolerance study. (Subtask 8)

16. Final Report.

Page 1-12

The schedulefor the ConceptualStudyphaseof the AFTA development is given in

Figure 1-2.

1.3. AFTA Brassboard Demonstration and Validation

Following the completion and evaluation of the Conceptual Study phase the Brassboard

Dem/Val phase begins. The first year of Dem/Val comprises the Detailed Design phase,

while the second year comprises the Fabrication, Integration, and Validation phase.

1.3.1. Detailed Design

The intent of the detailed design phase is to design the hardware and software architec-

tures recommended from the Conceptual Study phase, in preparation for Brassboard

fabrication in the Fabrication, Integration, and Validation phase. It comprises the following

subtasks:

The Brassboard AFTA Network Element is completely designed; the Brassboard NE

contains no ASICs. In addition, a comprehensive set of NE self-tests is designed. A

software simulation of the NE is constructed for use in Operating System and other AFTA

software development efforts.

The design of the backplane-independent components of the NE is described in VHDL

at the behavioral level.

The basic AFTA Operating System (OS) is designed and documented; the OS includes

task scheduling, intertask communication, input/output services, and Fault Detection, Iden-

tification, and Recovery functions.

Common-mode fault avoidance, removal, and tolerance techniques are selected and de-

signed from among those identified in the Conceptual Study phase.

The quantitative models of AFTA's reliability, availability, weight, power, volume,

failure rate, life-cycle cost, and other parameters are refined as design and application mis-

sion details become available.

The Fault Tolerant Data Bus (FTDB) is designed.

Deliverables of this phase include detailed design information such as mechanical

drawings, parts lists, schematics, timing analyses, data and control flow diagrams, Inter-

face Control Documents, VHDL, ADA, and Assembler source code, hardware and soft-

Page 1-13

ware documentation,refined analytical models, the software simulation of the NE, and

user/programmer guides. The documentation is provided both in hardcopy and digital for-

mat.

ir v

"p" F r W"

Ir IT r iT '_r

M

Z

• Ir •

A A _ A •

A •

d •

r

w,4

r_

¢D
iim
>,

,4111

L.
N

ca_ I
li I

m i

I

0 I
.am |
• m_ I

.._I

{a ui

,41
L

"0 {_1

"_'_1
.=_1

<_41

Figure 1-2. AFTA Conceptual Study Schedule

1.3.2. Fabrication, Intcgration, V_lidati0n

In the second year of the Dem/Val phase one or more Brassboard AFTAs are assem-

bled. The AFTA's Network Elements (NEs) are fabricated and tested, the Processing Ele-

Page 1-14

ments(PEs),Input/OutputControllers(IOCs),backplanes,andPowerConditioners(PCs)

arepurchased,andtheOperatingSystem(OS)softwareis completed.Fabricationof the
FTI)B also beans.

After fabrication and integration of the components the Brassboard is delivered to the

Army for demonstration and validation. For the demonstration, a representative application

is ported to AFTA. Subsequently, the critical parameters of AFTA are evaluated according

to the verification plan described in Section 11. The demonstration and validation tasks are

expected to be performed jointly by the Army, NASA LaRC, and CSDL.

The following parameters are measured, both with and without injected faults in rela-

tion to the TF/TA NOE application:

Delivered throughput per processing site

Available memory per processing site

Effective intertask communication bandwidth

Effective I/O bandwidth

Iteration rate of a task

Reliabilityt

Availabilityt

Testability

Cost per unit of servicer

Weight, power, and volume

The fault recovery and common mode fault tolerance capabilities specified by AVRADA

will also be demonstrated.

Deliverables of this phase include one or more copies of the Brassboard, detailed test

and evaluation results, and refined analytical models. The documentation is provided both

in hardcopy and digital format.

The sehedulable milestones for the Dem/Val are as follows:

Hardware:

t Cannot be measured directly. See Section 11.

1. Completethe detaileddesignof the AFTA BrassboardNetwork Ele-
ment. This includesschematics,netlists,PAL eqUations,microcode,

timing diagrams,partslists,andboardlayouts.

2. CompletetheNetworkElementsimulation.

3. Completethefabricationandtestingof a singleAFTA BrassboardNet-
workElement.

4. Completethefabricationandtestingof aredundantsetof AFTA Brass-
boardNetworkElements.

5. Complete VHDL behavioral model of the Network Element Scoreboard.

6. Complete VHDL behavioral model of Network Element Global Con-

troller, Voter/Fault Tolerant Clock, and Ring Buffer Manager.

Basic Operating System:

1. Complete the Software Development Plan.

2. Complete the Software Requirements Specification.

3. Develop a debugging/development support environment.

4. Perform Detailed Design.

5. Code and test subset of functions with simulation.

6. Test subset of functions with AFTA hardware.

Quantitative Models:

1. The quantitative models of AFTA are updated based on refined engineer-

ing data and mission details.

The schedule for the Dem/Val hardware and software development is shown in Figure

1-3.

Additional work modules associated with Dern/Val have not been scheduled as of

completion of the Conceptual Study. These tasks include the implementation of the Com-

Page 1-16

mon-ModeFault Avoidance, Removal, and Tolerance Techniques and the development of

the Fault Tolerant Data Bus.

1.4. Documents Used and Generated Uodgr_This Contract

The documents used under the AFTA Conceptual Study Phase are listed in Section 13,

"References." The documents generated under this contract are listed below.

NASA Contractor Report 189632, Volumes I and II, "AFTA Conceptual

Study Final Report"

"An Ultrareliable Integrated Digital Computer for Helicopters," R. Harper,

G. Grant, 10th Digital Avionics Systems Conference, October 1991

"A Fault-Tolerant Network Architecture for Integrated Avionics," B. Butler,

S. Adams, 10th Digital Avionics Systems Conference, October 1991

"Hardware Modeling and Top-Down Design using VHDL," D. Morton,

MIT SM Thesis, June 1991

"The Design and Construction of a Data Path Chip Set for a Fault Tolerant

Parallel Processor," C. Sakarnaki, MIT SM Thesis, February 1991

Page 1-17

o

r "9'--__.<

I° Ir._

d :::::::::::::::::::::

..a _ •

k

4

._

.___

<1,,4

g

Figure 1-3. AFTA Dem/Val Schedule

Page 1-18

2. Requirements Definition and Acquisition

This section outlines the mission requirements which were obtained during the

Conceptual Study phase for the helicopter TF/TA/NOE and Ground Vehicle missions.

Following the presentation of the mission requirements, a format is suggested for compu-

tational performance, reliability, and availability requirements to be imposed on AFTA by a

mission designer. The eventual availability of refined and accurate requirements in this

format is necessary to allow accurate architecture synthesist, analysis, verification, and

validation. In the preliminary stages of mission design, detailed parameters are unavail-

able, and only coarser, more heuristic measures must be used to size AFTA. Any architec-

ture synthesis process must function with such preliminary requirements, while tracking

their progressive refinement and solidification into a format such as that outlined below.

2.1. Functional Requirements

The following representative functions might be performed by the AFTA in the heli-

copter TFfI'A/NOE and the Ground Vehicle missions. These functions are described in

more detail in Sections 2.2 and 2.3.

TF/TA/NOE (TF/TA/NOE mission only)

Threat Avoidance/Engagement

Mission Planning

Guidance

Navigation

Vehicle Control

Sensor Management and Processing

Communications Management

Display Management

t In this document the term "architecture synthesis" refers to the configuration of AFTA for
a specific mission via the selection of the appropriate number of Processing Elements,

Network Elements, redundancy levels of processing sites, and other AFTA configuration
parameters.

Page 2-1

2.2. TF/TA/NOE Mission

The following description of the functions required to perform helicopter Terrain Fol-

lowing/Terrain Avoidance (TF/TA) and Nap-of-the-Earth (NOE) flight is synthesized from

References [Deu88], [Pek88], [Ber90], [Boo88], and [Fel90]. The requirements obtained

from these sources are insufficient to allow them to be cast into the formalism defined in

subsequent sections. However, any architecture synthesis process must be able to work

with incomplete, preliminary, and evolving requirements data. It is planned in the

subsequent phases of the AFTA development to continue the search for detailed application

data, so the subsequent section should be viewed as a first look at the application

requirements.

2.2.1. Functional Description

Helicopter TF/TA and NOE night flight requires the successful execution of the flight

control system, very near-field planning, near-field planning, trajectory generation, far-

field navigation, sensor management, navigation, and display functions (Figure 2-1).

Additional functions may include vehicle health management and propulsion control.

Because of the disastrous ramifications of losing TF/TA/NOE capability during low-altitude

night flight, it may be safely assumed that most of these functions are flight-critical.

The vehicle flight control system (FCS) translates acceleration and attitude commands

from the pilot or autopilot into commands to the vehicle actuators. The response time scale

for this function is on the order of tens of milliseconds. Reference [Osd88] describes a

representative fly-by-wire FCS for the Advanced AH-64 helicopter, in which a single

triplex flight control computer performs this function. Neither the type of computer nor its

throughput are cited in [Osd88]. As another point of reference, the NASA Ames UH-60

FCS currently under design uses three Motorola 68030 processorsi". Two are used for

computation purposes and one is used for I/O. The iteration rate of the control system is 50

Hz. 200 Hz Higher Harmonic Control (HHC) is not implemented. Approximately 100

inputs and a small number of actuators are accessed by the FCS, not all at 50 Hz. The

current design incorporates no redundancy since a hydraulic backup is available in the event

of FCS failure. In both of these designs, part of the processors' throughput is devoted to

the operating system, and in the first design to the redundancy management as well.

l" Personal communication between Jay Lala and Michelle Eshow, US Army Aviation

Systems Command.

Page 2-2

Figure 2-1. Functional Allocation to AFTA for Helicopter TF/TA/NOF_CS

Page 2-3

In the very near-field planning regime, the immediate environment is sens_ byimaging

sensors such as the crew's eyes, FLIP,, radar, etc. When obstacles are detected by this

sensor suite, the very near-field system may generate appropriate commands to override the

trajectory generated by the near-field trajectory generation function. The time scale for this

function is not documented in the available literature but is expected to be on the order of a

few seconds. It also expected to make extensive use of image and sensor processing.

The near-field planning function utilizes the preplanned mission route and the local area

map to generate a "locally optimized flyable trajectory over the next 30 seconds or so of

flight time [Pek88]." Reference [Pek88] further states that the Dynapath near-field plan-

ning algorithm requires about 6 seconds of 1 MIPS MicroVAX II CPU time to plan 30

seconds of flight.

The trajectory generation function integrates the very-near and near-field outputs to

consu'uct a flyable six degree of freedom trajectory to accomplish specific tactical objec-

tives, av-oidobStaeles, and follow ihe immediate terrain profile.

The far-field navigation functi0n is responsible forthe definition, prioritization, and or-

dering of mission goals, allocation of vehicle stores, resources, and weapons, timeline

generation, waypoint generation and planning, and optimization and determination of the

overall route to be flown. This function can be carried out both prior to the mission and,

given sufficient in-flight computational resources, during the mission as the situation

changes due to new threat information, inflight failures, unanticipated environmental con-

ditions, a changing tactical environment, etc. The time scale of this function is the entire

mission duration. In [Deu88] it is asserted that far-field planning (comprising the goal

planning, waypoint path planning, and timeline management algorithms developed in

[Deu88]) can be successfully performed for a flight system on a computer having a 1 MIPS

throughput. As a second data point, reference [Pek88] provides execution times for the

Dynaplan Mission Planning Workstation's automatic route planner (Table 2-1).

The TF/TA/NOE-specific sensor management function is responsible for providing the

pilot with a reliable and accurate view of the ground via sensor selection, mode control,

pointing, redundancy management, and sensor/image data processing. The TF/TA/NOE-

specific sensor suite consists of the FLIR, radar [Pek88], and projected map [Fel90] sub-

systems.

Page 2-4
7-;

Map Grid 1 MIPS Micro-

50 10 sec 30 see
75 20 sec 1 min
100 40 sec 2 rain
125 1.5 min 5 min
150 3 min 12 min
200 7 min 21 min

Table 2-1. Execution Times for Dynaplan Automatic Route Planner

As another point of reference for TF/TA and display requirements, the AVRADA UH-

60 STAR TF/TA applicationi" requires the throughput of one Motorola 68020 processor,

the Pilot Vehicle Interface (PVI) requires three Motorola 68020 processors, and the

Cathode Ray Tube/Helmet Mounted Display (CRT/HMD) imagery requires two MIPS,

Inc. R3000 processors. In all cases part of the processors' throughput is devoted to ex-

ecutive and other overhead functions.

The I/O requirements are as follows:

128 Bytes at 8 Hz 1553 to/from INS/GPS

298 Bytes at 4 Hz 1553 to/from PVIs

128 Bytes at 1 Hz 1553 to/from INS/GPS

TBD Ethernet to/from R3000s

In this application, all TF/TA/NOE functionality is assumed to be flight critical.

The traditional navigation function controls and integrates the radar/baro altimeters,

INS, GPS, air data, doppler radar, compass, and other vehicle state sensors to generate a

reliable and accurate estimate of the vehicle state [Fel90].

The display function is responsible for providing the crew with a representation of ve-

hicle state and systems status, steering, speed and attitude cues, a representation of the ex-

ternal environment, and other functions TBD. In AFTA it is anticipated that the display

function will be used to provide the flight and ground crews with indications of the overall

AFTA operability level and fault detection and identification results.

? Personal communication between Rick Harper and Bob Patel, US Army AVRADA.

Page 2-5

In reference [Fel90], the Pave Low III Enhanced Navigation System Mission Computer

provides control of the navigation sensors, radar, FLIR, and projected map for a MH-53J

helicopter using one IBM AP-102 computer.

The Advanced Apache Mission Equipment Package described in [Boo88] does not per-

form many of the functions listed above (e.g., TF/TA/NOE/FCS), but does perform other

functions which might be required of the computation system on an advanced attack heli-

copter. They are listed here for reference purposes. The throughput requirements are such

that ten 1.0 to 1.5 MIP 1750A processors are needed: System processor*, Display proces-

sor*, Weapons processor*, Nav processor*, Power management processor*, Comm pro-

cessor, Aircraft Survivability processor, Digital map processor, Air data processor, and

AAWWS processor, Dual-dual 1553 buses are used for interprocessor communication,

and two 2 HSDBst are used for various subsystem communication purposes.

1 TF/TA/NOE 680x0

3 PVI 680x0s

2 imagery R3000s

2 FCS 680x0s

1 FCS I/O 680x0

Throughput

Total of 9 processing sites

!/O

200 Byies in, ---20 Bytes out at 50 Hz

128 Bytes in/out at 8 Hz

298 Bytes in/out at 4 Hz

1.2.8 Bytes in/out at 1 Hz

Aggregate bandwidth of 13,344 bytes/sec (0.107Mbit/sec)

required

Fli 8ht Critical

Crificafity

Table 2-2. Helicopter TF/TA/NOE/FCS Requirements Summary

* Duplex 1.0 to 1.5 MIP 1750A processors. The types of other processors are uncited in
[Boo88].

t [Boo88] does not state whether this is the JIAWG HSDB, the SAVA HSDB, or some
other HSDB.

Page 2-6

Table2-2 summarizestheTF/TA/NOE/FCSrequirementsobtained from the literature

search. It is expected that, for reasons mentioned above, the processor count indicated in

the table provides a throughput that significantly exceeds that needed by the application. In

many eases only a fraction of the processors' throughput is actually spent on the application

program; the rest is spent on executive and other overhead functions, especially for applica-

tions currently running under disk-based multitasking multiuser operating systems.

2.2,2. Operatignal Scenario

To serve as a context for evaluating the AFTA in the helicopter TF/TA/NOE applica-

tion, an extremely simplified mission state transition model has been constructed (Figure 2-

2). The model consists of four states. In the ,'hiatus" state, the vehicle is idle, neither un-

dergoing maintenance nor performing a mission. Presumably the vehicle is powered

down. Periodically, the vehicle is called upon to sortie. It may be assumed that it is desir-

able to transition from the hiatus state to the sortie state as quickly as possible, as in a

scramble scenario; therefore there is only sufficient time for rapid I-BIT (See Section 5 for

definitions of the various forms of AFTA Built In Test and the AFTA testability strategy) to

determine AFTA's readiness. The I-BIT determines whether sufficient AFTA components

are nonfaulty to permit formation of the Minimum Dispatch Complement (MDC), and thus

whether the vehicle may sortie*. Note that it is assumed that the vehicle is allowed to sortie

with faults. If MDC is met, the vehicle enters the "sortie" state, in which it performs its

mission. If MDC cannot be formed, the vehicle is unable to sortie because AFTA is bro-

ken, and enters the "maintenance" state. The analytical models found in Section 9 of this

report quantify the probability of occurrence of this event.

During the mission, C-BIT is continuaiiyexecuted to detect and recover from faults ac-

cording to fault recovery strategies selected by the application designer from among those

listed in Section 5. However, critical failure modes exist which can defeat AFTA's redun-

dancy and its C-BIT. One example is two or more faults occurring in different members of

a redundant processing site within such a Small time window that C-BIT has not recovered

from the fh-st before the second arrives. Another example is a long string of faults causing

exhaustion of spares, such that recovery from subsequent faults is impossible. In these

cases, since it is assumed that the AFTA is performing flight critical functions, it follows

that the vehicle cannot sustain controlled flight, and is lost. It enters the "vehicle lost" state.

* The vehicle may be unable to sortie for other reasons as well. For the current analysis we

only consider the impact of AFTA faults on vehicle availability and reliability.

Page 2-7

Theanalyticalmodelsfound in Section9 of thisreportquantify theprobability of occur-
renceof thisevent. Whenthe sortiehasbeencompletedwithout acritical AFTA failure,

thevehicleis assumedto enterthepost-flightmaintenancestate,in whichthevehicleis re-
turnedtoa fault-freehiatusstatevia themaintenanceprocedureoutlined below.

hiatus

maintenance

complete

MDC

I met_lsorfie[failure

flight-critical

_[vehiclelost]

Figure 2-2. Helicopter TF/TA/NOE Mission Scenario State Diagram

In the maintenance state, the field maintenance crew executes AFFA M-BIT to identify

faulty Line Replaceable Modules (LRMs) or Line Replaceable Units (LRUs). The crew

also interrogates fault logs which I-BIT, C-BIT, and M-BIT have placed in AFTA's non-

volatile mass memory. The crew replaces components identified as faulty, re-executes M-

BIT to confirm fault exorcism, and returns the vehicle to its hiatus state (details on the

AFTA maintenance plan are presented in Section 7). It is assumed that the maintenance

task takes at least as long as the sortie itself, so the vehicle has essentially missed the sortie

opportunity.

The expected mission environment for the helicopter TF/TA/NOE corresponds to the

Aircraft, Rotary wing environment described in MIL-HDBK-217E, with expected sortie

times, denoted Ts, ranging from one to four hours. The hiatus time (denoted Th) plus the

sortie time Ts is assumed to be 24 hours; this assumption is trivially changed.

Th + Ts = 24 hours (2.9)

The hiatus environment is assumed to correspond to the Ground, Fixed environment de-

scribed in MIL-HDBK-217E. Failure rates predicted assuming a Ground, Fixed environ-

ment may be higher than those experienced in the field because MIL-HDBK-217E failure

rates are for powered-up components. In actuality, AFTA will be powered down until just

before sortie, so the actual hiatus failure rate may be lower than that predicted by MIL-

HDBK-217E. On the other hand, it is well known that cycling the power to electronics is

Page 2-8

more stressful than leaving them on. Unfortunately, MIL-HDBK-217E contains no
i

methodology for calculating the failure rate of electronics as a function of power cycles, so

the Ground, Fixed assumption will have to suffice.

The mission and hiatus times, environments, and failure rates can be trivially changed

in the analytical models presented in Section 9, and can be modified upon direction from

the Army.

2.2.3_ Real-Time Constraints

In the helicopter application it is expected that AFrA will be executing flight-critical

functions having hard real-time constraints on the order of tens of milliseconds. Function

dropouts exceeding these times may be assumed to result in Loss of Control (LOC) of the

vehicle. In-flight redundancy management and fault recovery options are therefore con-

strained to those which do not interrupt service for intervals exceeding the real-time con-

straint interval. One such option which will be analyzed in Section 9 as the "reliability

model" is known as a "downmode" or "graceful degradation" policy, in which faulted

members of a redundant processing site are quickly masked out from further computations,

but no lengthy recovery attempt is made. This policy meets fast real-time constraints, but,

because it does not attempt to differentiate transient from permanent faults nor switch in

spare processors to restore the redundant site's redundancy level, eventually could result in

exhaustion of the site's redundancy and hence loss of that site. It is therefore suitable only

for mission times which are short compared to the AFTA components' MTBFs. In con-

wast, during pre-sortie AFTA initialization, in which no flight-critical real-time constraints

exist, a significant amount of time (on the order of seconds) may be available for the AFFA

redundancy management functions to attempt to optimally construct the MDC from the

available nonfaulty resources. Such a policy does a much better job at determining which

resources should be members of which redundant processing sites, and performing the ap-

propriate and lengthy initializations and state transfers. This option is also analyzed in Sec-

tion 9, where it is referred to as the "availability model." Since a given AFTA implementa-

tion supports the use of multiple redundancy management policies, each appropriate for a

given mission phase, both of the above policies would be used in the helicopter

TF/TA/NOE application.

The various fault recovery options possible in AFTA, which include the two mentioned

above, are described in Section 5.

Page 2-9

2.3. Ground Vehicle Mission

Requirements acquisition for the Ground Vehicle mission is in a more preliminary stage

than for the TFtTA/NOE mission. All that has been obtained in the Conceptual Study is a

general outline of the mission, a system specification for the Combat Vehicle Command

and Control System [CVC2], a set of standards to which the AFTA must comply for the

Ground Vehicle application [MIL-STD-344], and informal guidance from CECOM-C3.

More detailed requirements will be acquired during subsequent phases of the AFTA pro-

gram to permit plausible synthesis, analysis, verification, and validation of an AFTA con-

figuration for the Ground Vehicle application.

2.3.1. Functional Description

The initial ground vehicle application for AFrA is the Ground Maneuver Systems Fault

Tolerant Navigation Processor (FTNP) for Armored Systems Modernization (ASM) vehi-

cles. These vehicles must traverse rough terrain at high rates of speed, often during combat

operations. To assist the crew in this function, the Navigation Processor stores three-di-

mensional terrain data and digital map information; it also receives real-time position up-

dates from a GPS and/or inertial navigation support system, real-time reports of enemy

threats and targets that the vehicle will encounter on its path of travel, and local vehicle sen-

sor system threat detection inputs. Based on threat inputs, the vehicle must either change

its path of travel to avoid the threat, or engage the threat on the move. The Navigation Pro-

cessor must in both cases compute and provide to the crew real-time path information that

allows them to effectively maneuver across the terrain at high speed, while meeting appro-

priate threat avoidance, engagement, and vehicle mobility constraints. In addition, the

Navigation Processor must provide the ASM gun system with real-time information needed

to target threats while on the move.

2.3.2. Operational Scenario

The operational scenario for a ground vehicle differs from that of the helicopter in sev-

eral respects. In addition, simplifying assumptions are made to facilitate the reuse of the

combinatorial analytical models presented in Section 9. During the hiatus phase, it is as-

sumed that the vehicle is undergoing continual maintenance via incessant tinkering by a

bored crew. This motivates replacing the hiatus state in the helicopter scenario with the

"maintenance" state in the Ground Vehicle scenario. Because of the continual maintenance,

it is assumed for analytical convenience that the vehicle sorties into the "mission" state with

zero faults and unity availability.

Page 2-i0 o

During the mission, cumulative failures can eventually defeat the ASM FTNP's redun-

dancy. The results of a debilitating failure of ASM FTNP, while perhaps having severe

consequences to the success of the mission, do not necessarily result in the loss of the ve-

hicle and crewt. Therefore upon a mission-critical failure the vehicle enters the "mission

failed" state. Eventually the vehicle and maintenance crew find each other, at which time

the vehicle enters the maintenance state. In the event of successful mission completion, the

vehicle also enters the maintenance state, where it is tested and maintained as outlined

above and in Section 7. The Ground Vehicle mission scenario is diagrammed in Figure 2-

3.

mission

i

maintenance

mission

complete

mission-critical

I :ailure .I • •]I _ [m,ss,on failed

rejoin
maintenance

cgew

Figure 2-3. Ground Vehicle Mission Scenario

The mission times range from several hours to an indefinite interval (possibly days or

weeks) whose duration depends on tactical mission requirements and ASM vehicle parame-

ters such as reliability and availability. Based on informal information from CECOM-C3 a

mission duration of 24 hours is typical. The maintenance time also varies widely. Its exact

value does not enter into the FTNP reliability calculations.

The mission environment for the ASM FTNP corresponds to the Ground, Mobile envi-

ronment described in MIL-HDBK-217E. As in the helicopter scenario, the maintenance

environment is (irrelevantly) assumed to correspond to the Ground, Fixed environment de-

scribed in MIL-HDBK-217E.

t AFTA is capable of performing safety- and vehicle-critical functions in a ground as well
as in a flight vehicle. However, the worst that can happen if AFTA is executing the ground
vehicle navigation function outlined above is that the vehicle gets lost and the crew has to
navigate by more conventional means. This can in turn result in vehicle loss if it unwit-

tingly strays into a threat. Changing the model's mission loss state to a vehicle loss state is
a purely syntactic one for the purposes of this analysis.

Page 2-11

2.3.3. Real-Time Constraints

As in the helicopter mission, the ASM VI'NP must perform real-time functions. Unlike

the helicopter mission, short ASM FTNP dropouts (e.g., one second) for fault recovery do

not necessarily result in LOC. In addition, the long mission duration requires the use of a

longevity-enhancing redundancy management strategy which maximizes the use of re-

sources and does not gratuitously condemn any components. This type of redundancy

management would perform permanent and transient fault discrimination, followed by re-

covery from transient faults or switching in of spares, and other longevity-enhancing re-

dundancy management techniques. Such a redundancy management strategy is compatible

with the relatively relaxed real-time response requirements of the FTNP, and allows the

"availability" model described in Section 9 to be used to calculate the probability of mission

loss.

2.3.4. SAVA Standard Compliance

For maximum commonality with existing and planned ASM computing platforms and

systems, the Navigation Processor must operate on the ASM Standard Army Vetronics Ar-

chitecture (SAVA) Bus [MIL-STD-3441. The Navigation Processor may be a "black box"

connected to the ASM SAVA bus, or may be composed of a network of processing boards

performing the navigation functions through the SAVA bus. The role of standards in the

AFTA is discussed in more detail in Section 3.

2.4. Status of Requirements Acquisition

Under the Conceptual Study the requirements acquisition process was initiated for the

two Army applications of interest. This process resulted in a preliminary sense of the com-

putational functions to be performed and the operational scenarios for the two missions, but

additional requirements acquisition and analysis must be aggressively pursued during the

remainder of the AFTA development to ensure that the system produced under Dem/Val has

relevance to the needs of future Army missions.

2.5. Computational Performance

Each function may consist of one or more computational tasks which may be scheduled

on the AFTA. The computational requirements of an application are embodied in the char-

acteristics of the schedulable tasks which make up its functions. The list presented below

enumerates computational characteristics of the application's tasks which are needed to de-

Page 2-12

termine important AFTA architectural parameters such as the number of processors, the

amount of memory, the bandwidths of the various networks, etc. In an ideal world, the

entries in the list below would be provided for each schedulable task of each function.

However, in the early phases of system synthesis;only aggregate figures are usually avail-

able.

agg.alghg. A task's throughput requirement is expressed in terms of the number of

instructions per second required for a processor to execute the task within a desired period

of time. A variety of instruction-mix benchmarks may be used for specifying throughput.

These include the Digital Avionics Instruction Set (DAIS), Whetstones, Dhrystones, DP

Linpacks, Specmarks, VAX Units Per Second (VUPS), and simply Instructions Per Sec-

ond (IPS). If they are believed to be accurate representations of an application task's com-

putational requirements, most of these quantifications are at worst dangerously misleading

and at best useful only for preliminary gross system sizing. It is much more accurate to

continually benchmark an application task's execution time using a specific high level lan-

guage, compiler, and processing element as its development proceeds. Throughput mar-

gins are usually specified on a task-by-task basis.

Iteration rate. For many real-time control applications a task must be executed at a

fixed, known frequency. This is referred to as the task's iteration rate and is expressed in

Hertz. AFTA is currently being designed primarily for the execution of iterative tasks

having hard real-time deadlines.

Execution latency. Often a given task must be executed and provide outputs either to

another task or to an interface to the outside world within a specified time of the occurrence

of an event, such as the reading of a sensor input. _e time interval from the occurrence of

such an event to the provision of the output is denoted the task execution latency. For an

iterative task, the latency can be at most the reciprocal of its iteration rate.

Scheduling constrai0ts. Tasks can be preemptible by other higher priority tasks or non-

preemptible by those tasks. In general, a hierarchy of preemption relationships exists in

which some tasks may preempt others but not vice-versa. It is preferable for verification

purposes if this preemption hierarchy is static.

Task orecedence and data de_ndency relationships. In general, tasks must execute in a

precedence relationship which is defined by the needs of the application. This relationship

must be specified unless the order in which the tasks execute is unimportant.

Page 2-13

Memory, The memory requirements of each task must be specified. Usually, memory

consumption margins are specified on a task-by-task basis.

Intertask communication bandwidth and latency, The intertask communications band-

width is the number of bytes of data per second that a source task transmits to a recipient

task. The intertask latency is the time in seconds between when a source task transmits a

data byte and the recipient task receives that byte.

_t/Ou _tput bandwidth and latency. The input bandwidth is the number of bytes

transferred per second from an input device to a recipient task. The output bandwidth is the

number of bytes transferred per second from a source task to an output device. The input

latency is the time in seconds between the sampling of an input byte by the input device and

the availability of that byte at the input of the destination task. The output latency is the

time in seconds between when a computational task generates an output byte for delivery to

an output device and when the output device receives the output byte.

The transport lag of a task is defined to be the sum of its input, execu-

tion, and output latencies.

In AFTA most timing relationships such as latencies are specified and measured with

respect to periodic timer-generated frame boundaries, as described in Section 5.

2.6. Reliability and Availability

AFTA will reside in a vehicle which must periodically perform sorties, during which it

may be called upon to perform mission- or vehicle-critical functions. The unreliability of

AFTA will contribute to the probability that the vehicle cannot sortie, the probability that the

mission cannot be accomplished, and the probability that the vehicle is destroyed via loss of

a flight-critical computational function. The maximum allowable probabilities of occur-

rence of these events must be specified by the vehicle or application designer. In addition,

the minimum AFTA configuration (i.e., number of processing sites, their redundancy lev-

els, I/O device availability, etc.) required for dispatch, mission success, and vehicle sur-

vival may be specified, a_weli as the number of sequential or simultaneous faults the

AFTA must be able to tolerate. These parameters may in some cases be inferred from the

probabilistic requirements.

Three reliability-related figures of merit can be used to specify and evaluate AFTA im-

plementations.

Page 2-14

2.6.1. Sortie Availability

The Sortie Availability is defined to be equal to one minus the probability that the vehi-

cle is prevented by AFTA faults from beginning a mission at the desired time. Usually,

maintenance activities are employed during operational hiatus to maximize this quantity;

these activities must be specified. Alternatively, the minimum complement of resources re-

quired to sortie, known as the Minimum Dispatch Complement (MDC) may be specified or

may be determined by reliability analysis.

2.6.2. Mission Reliability

The Mission Reliability is defined to be equal to one minus the probability that failure of

AFTA causes mission abort. It is generally assumed that during the mission no mainte-

nance is possible. Alternatively, the minimum complement of resources required to execute

the mission, known as the Minimum Mission Complement (MMC) may be specified. In

this case the probability that an MMC is operational may be computed to yield mission reli-

ability.

2.6.3. Vehicle Reliability

The Vehicle Reliability is defined to be equal to one minus the probability that failure of

AFTA causes destruction of the vehicle. Alternatively, the minimum complement of re-

sources required to safely control the vehicle, known as the Minimum Safety Complement

(MSC) may be specified. The probability that an MSC is operational may be computed to

yield vehicle reliability.

2.6.4. AFTA Reliability Formulation ,Approach

To successfully perform the mission, the computer system must be capable of execut-

ing numerous computational functions. In the AFTA reliability formulation approach used

in this document, the application designer specifies a quantity known as function reliability;

the required reliability of a given function, such as guidance, navigation, TFfrA/NOE,

displays, or flight control, is specified. At the application designer's level, let the computer

system S be represented by the set of functions Fj required for mission success or vehicle

safety. In the sequel the computations will be set up assuming that the vehicle reliability is

being calculated. The formulation for mission reliability is identical except the functions

needed to perform the mission are used to compose S instead of those needed for vehicle

safety.

Page 2-15

S = {Fj t Fj needed to maintain vehicle safety} (2.1)

The probability that the computer system can maintain vehicle safety is the joint prob-

ability that all needed functions can be performed. Let this quantity be denoted by Rsys.

Rsys = Prob(Fj can be performed, 'x/Fj _ S) (2.2)

For example, a given system may require that the Navigation, TF/TA/NOE, and Flight

Control functions, perhaps denoted FN, FT, and FFC , be available for the successful pi-

lotage and control of the vehicle. Then

S = {FN, FT, FFC } (2.3)

and

Rsys = Prob(FN, FT, and FFC can be performed) (2.4)

2.6.5. Function Reliability

The system reliability hinges on the reliability with which the requisite computational

functions earl be performed. Function reliability refers to the probability that a given func-

tion can be performed by the computational system at a given time. In general, the success-

ful performance of a function requires the correct operation of a suite of resources. In

AFTA, a resource is considered to be a redundant processing group (known as a VG) or a

set of Input Output Controllers (known as IOCs). The probability that the function can be

performed is equal to the probability that the related suite of resources is operational. The

application designer must enumerate the resources which must be operational in order to

perform each given function. A given function may require multiple resources and a given

resource may support multiple functions, subject to the computational requirements of the

application. Arbitrary mappings of functions to resources and vice-versa are allowed.

For reliability evaluation purposes, a function Fj is equivalent to the set of resources re-

quired to execute it:

Fj = {resourcei I resourcei needed to execute function Fj } (2.5)

The reliability of function Fj is the joint probability that all needed resources are opera-

tional. Let this quantity be denoted by RFj.

RFj = Prob(resourcei operational, 'v' resourcei E Fj) (2.6)

Page 2-16

For example, a given function, say FN, may require the services of processing sites 1

and 2 (known as VGs in an AFTA) and I/O Controllers 4 and 5.

FN = {VG 1, VG2, 104, 105 } (2.7)

The probability of successful execution of this function, i.e., its function reliability, is

the probability that all of these resources are operational.

RFN -- Prob(FN available) = Prob(VG1 & VG2 & 104 & 105 operational) (2.8)

When the suite of requisite computational functions and their mappings to AFTA re-

sources are known, the analytical models presented in Section 9 can be used to estimate the

mission and vehicle reliability as defined above.

2.7. Testability

A testable system provides an unambiguous indication of the existence and location of a

fault. AFTA is partitioned into Line Replaceable Modules (LRMs) which are the units of

field diagnosis and repair. Typically an LRM comprises one circuit card assembly contain-

ing, for example, one or more Processing Elements. Section 4 describes the AFTA LRMs

and LRUs in more detail. AFTA is intended to be a testable system at the LRM level, in

that a fault in AFTA will be detected and isolated to the faulty LRM. It is intended that fault

diagnosis and identification be performed in thevehicle without any external test equip-

ment, using self-test functions which are an intrinsic part of the AFTA Operating System.

Depot testing will extend the testing granularity to the integrated-circuit level. The AFTA

approach to testability is described in detail in Sections 5 and 7.

2.8. Maintainability

AFTA is being designed for two-level maintenance. The first maintenance level occurs

at the field organizational unit,.and consists of a maintenance crew which executes the vari-

ous AFFA BIT suites (described in Section 5), removes and replaces LRMs/LRUs identi-

fied asfaulty, replaces them with nonfaulty LRMs/LRUs, sends the faulty components

back to the depot, and re-exercises BIT to confirm fault exorcism. One option being con-

sidered for AFTA is to discard faulted components instead of returning them to the depot; a

decision regarding this option is pending. The second level of maintenance occurs at the

depot, where received LRMs/LRUs are tested, repaired, and returned to the spares logistics

pool. The AFTA maintenance procedure is described in detail in Section 7.

Page 2-17

This page intentionally left blank.

Page 2-18

• AFTA Overview

The information contained in this report is intended to comprise an exhaustive descrip-

tion of AFTA, albeit at a high functional level of abstraction. Additional features may be

added to AFTA as subsequent phases of the development program are performed.

AFTA is based on the Fault Tolerant Parallel Processor (FTPP) architecture developed

by the Charles Stark Draper Laboratory (CSDL). The FTPP architecture was conceived to

satisfy the dual requirements for a computer system of ultra-high reliability and high

throughput. To satisfy ultra-high reliability requirements, the FTPP is designed to be re-

silient to Byzantine faults. This terminology will be defined below.

To satisfy high throughput requirements, the FTPP utilizes multiple Processing Ele-

ments to obtain parallel processing capability. For an operational definition of parallel pro-

cessing, we invoke [Hwa84]:

"Parallel processing is an efficient form of information processing which
emphasizes exploitation of concurrent events in the computing process.
Concurrency implies parallelism, simultaneity, and pipelining. Parallel
events may occur in multiple resources during the same time interval; simul-
taneous events may occur at the same time instant; and pipelined events may
occur in overlapped time spans. These concurrent events are attainable in a
computer system at various processing levels. Parallel processing demands
concurrent execution of many programs in the computer. It is in contrast to
sequential processing. It is a cost-effective means to improve system per-
formance through concurrent activities in the computer." ([Hwa84] p. 6)

The FI'PP may also be considered a distributed architecture in the sense of [Cha84],

which defines loosely-coupled distributed systems as

"multi-computer configurations that do not share immediate memory and
can be dispersed over wide geographical areas." ([Cha84] p. vi)

"Logically, a loosely coupled distributed system can be considered to be a
collection of processes running on various processor elements (or nodes).
Although processes running on the same node can communicate using
shared memory, processing running on separate nodes must communicate
using messages (or their equivalent)." ([Cha84] p. 194)

The FTPP architecture is described in references [Ab188], [Bab90a], [Har87],

[I-Iar88a], [Har88b], and [Har91a]. It is composed of Processing Elements (PEs) and

specially designed hardware components referred to as Network Elements (NEs). The

multiple Processing Elements provide a parallel processing environment as well as compo-

Page 3-1

nentsfor hardware redundancy. The group of Network Elements acts as the intercomputer

communications network and the redundancy management hardware. As with most com-

plex computing systems, AFTA is best viewed as a layered system (Figure 3-1). The top

layer consists of the applications programs themselves. In an ideal world, applications are

constructed by the applications engineers without regard for the parallel and redundant na-

ture of the AFTA system. In this view, AFTA supports a virtual architecture of a number

of Ada tasks which may execute in parallel, subject to preemption, data, and control flow

dependencies. The tasks communicate using message passing. In reality, the applications

engineers must to a large extent assist in the selection of appropriate task-to-processing site

mappings, processing site redundancy levels, fault recovery strategies, and other parame-

ters from among those made available by the AFFA architecture.

The next lower layer consists of the AFTA System Services, described in Section 5.

Certain services are visible and may be invoked by the applications programmer;, these in-

clude input/output, task scheduiing, and intertask communication Services. This layer is

intended to mask the complexity of the AI_TA's lower layers from the programmer. The

application programmer's interface to AFTA is described in Section 5. Other important

functions of the AFTA System Services are not directly accessible by the applications pro-

grammer and are performed in a manner which is largely transparent. These include the

functions of mapping of tasks to processing sites, arranging of preemption of lower prior-

ity tasks by higher priority ones, routing intertask messages to remote tasks, disassembling

and reassembling long messages, performing input/output functions, Built-In Testing

(BIT) and fault logging, and fielding software exceptions. Other functions are fault detec-

tion, identification, and recovery (FDIR); reconfiguration of the parallel resources into re-

dundant computing sites; and interfacing to the interprocessor communication network

hardware. The application tasks and AFTA System Services execute on the AFTA Pro-

cessing Elements, as indicated in Figure 3-1.

The next lower layer of the AFTA consists of the interprocessor communication net-

work hardware, known as Network Elements. This hardware implements the interproces-

sot message passing functions of the AFTA. In addition, it implements throughput-critical

fault tolerance-specific functions such as voting of messages emanating from redundant

processing sites and providing error indications, assisting in synchronizing redundant pro-

cessing sites, and assisting in arranging the non-redundant processing resources of the

Ab'TA into redundant processing sites based on the needs of the application, mission mode,

and fault state of the AFTA. The inter-Network Element communication links provide

high-bandwidth, electrically isolated, optical communication paths between the Network

Elements of the AFTA. The data transmissions over the links also keep the Network Ele-

ments synchronized to within a small skew using a digital phase-locked loop. A detailed

description of the Network Element is provided in Section 4 of this report.

Standard Bus(es)

Controllers Element

Figure 3-1. Ab'TA Abstract Structure

The AFTA Communication Services run on the Processing Elements and interface to

the Network Elements over a standard backplane bus. The Ab'TA Input/Output Services

also run on the Processing Elements and communicate with the Input/Output Controllers

over a standard backplane bus, which may be separate from the bus which hosts the Pro-

cessing Element-Network Element interface.

3.1. Byzantine Resilience Approach to Fault Tolerance

For a computer to be considered adequately reliable for life- or mission-critical applica-

tions, it must be capable of surviving a specified number of component failures with a

probability approaching unity. A conservative failure model is to consider failures as con-

Page 3-3
/

sisting of arbitrary behavior on the part of failed components. This type of fault, known as

a Byzantine fault, may include stopping and then restarting execution at a future time,

sending conflicting information to different destinations, and, in short, anything within a

failed component's power to attempt to corrupt the system.

Since the concept of Byzantine resilience is central to the theory and operation of the

FTPP, it is important to discuss the motivation for this seemingly extreme degree of fault

tolerance. Cost-effective validatability and achievement of high reliability are important

motivating factors.

Validation-based motivation for Byzantine resilience is perhaps best viewed in the con-

text of an example. We suppose that a digital computer system having a maximum allow-

able probability of failure of 10.9 per hour is required, and that this system must be con-

structed of replicated channels each of which has an aggregate failure probability of 10-4

per hour. Consider a traditional syste m Failure Modes and Effects Analysis (FMEA)-based

approach to achieving the requisite failure rate: likely failure modes of the system are ana-

lyzed, their likely extent and effects are predicted, and suitable fault tolerance techniques are

developed for each failure mode which iS conside_ tO po_ reasonable chance of oc-

curring. For the system to meet the reliability requirement, the probability that any given

fault is not covered must be less than =10-9/10 -4 -- 10-5; that is, it is necessary that the like-

lihood of a failure occurring which was not predicted and planned for must be less than _,

10.5 . Viewed another way, it is (or should be) incumbent upon the designer to prove to an

aggressive and competent inquisitor such as a certification authority that fewer than one in

100,000 faults which could occur in the field (as opposed to those induced or injected in

the laboratory) could conceivably defeat the proposed fault tolerance techniques. If this as-

sertion cannot be demonstrated within a reasonable amount of time and money, then it is

not feasible to validate the FMEA assumptions and hence the claimed 10 .9 per hour failure

rate.

The FMEA process is tedious, time-consuming, and extremely expensive. This is at-

tested to by the seemingly contradictory trend of increasing costs of digital avionics sys-

tems even as the cost of hardware continues to decline. This is at least partially due to the

fact that the cost of validating critical systems completely overwhelms the cost of their de-

sign and construction. Software validation is a major component of this cost, and inappro-

priate fault tolerance-related architectural features only aggravate the difficulty.

Page 3-4

In contrast consider another fault tolerance technique which guarantees that the system

can tolerate faults, without relying upon any a priori assumptions about component misbe-

havior. In effect, a faulty component may misbehave in any manner whatsoever, even to

the extreme of displaying seemingly intelligent malicious behavior. A system tolerant of

such faults would obviate the expensive and physically intractable problem of convincing a

knowledgeable inquisitor of the validity of restrictive hypotheses regarding faulty behavior,

in effect permitting faulty behavior to subsume all conceivable FMEAs. Such a system is

denoted "Byzantine resilient," that is, capable of tolerating "Byzantine" faults. The source

of this terminology may be found in the seminal literature on the theory of ultra-reliable

distributed systems [LSP82]:

"Reliable computer systems must handlemalfunctioning components that
give conflicting information to different parts of the system. This situation
can be expressed abstractly in terms of a group of generals of the Byzantine

army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. How-
ever, one or more of them may be traitors who will try to confuse the oth-
ers. The problem is to find an algorithm to ensure that the loyal generals
will reach agreement."

The generals in this analogy correspond to Processing Elements in a redundant computing

system, the traitors correspond to faulty Processing Elements, and the messengers corre-

spond to interprocessor communications links. It is typically assumed that faulty link

(traitorous messenger) behavior is subsumed by faulty source Processing Element

(traitorous general) behavior.

One expects a system capable of tolerating such a powerful failure mode to be intrinsi-

cally complex and possess numerous inscrutable and exotic characteristics. To the con-

trary, the requirements levied upon an architecture tolerant of Byzantine faults are relatively

straightforward and unambiguous, simply comprising a lower bound on the number of

fault containment regions, their connectivity, their synchrony, and the utilization of certain

simple information exchange protocols. We assert that a satisfactory demonstration that an

architecture possesses these simple attributes is far less expensive and time-consuming than

proving that certain uncovered failure modes can occur with a probability of at most 10 -5.

Existing critical computing systems are typically designed to be triply or quadruply redun-

dant anyhow; meeting the requirements for Byzantine resilience requires a simple rear-

rangement of the channels and addition of a few interchannel communication protocols.

We think this minor rearrangement of the architecture recovers many times over the cost of

an FMEA-based validation. Moreover, it is our experience that the run time overhead re-

Page 3-5

quiredto achieve Byzantine resilience can be substantially less than that required to achieve

significantly lower levels of fault coverage using fault tolerant techniques based on restric-

tive hypothetical models of failure behavior.

By making the system Byzantine resilient, in our opinion we have imparted it some

powerful programming attributes which result in a significant reduction in software valida-

tion effort and cost. First, the hardware redundancy is largely transparent to the program-

mer. The applications programs and the operating system are developed, debugged, and

validated in a simplex (nonredundant) environment without any regard for the redundant

copies of the software executing on redundant hardware. Second, the management of

hardware redundancy is transparent to the programmer. The applications programs and the

operating system are rigorously separated from the hardware and software that manages re-

dundancy. Redundancy management includes functions for detection and isolation of

faults, masking of errors resulting from faults, and reconfiguration and reallocation of re-

sources. This rigorous separation allows independent validation of various software enti-

ties such as the applications programs, the operating system, and the redundancy manage-

ment software. By breaking the destructive synergism that comes from intertwining these

entities, significant reduction in software validation effort has resulted for the FTPP's pre-

decessors, including the Fault Tolerant MultiProcessor (FTMP) [La186a], the Fault Toler-

ant Processor (FTP) ([La186b]), and the Advanced Information Processing System (AIPS)

([La184], [Lal85]). Third, a guarantee is made to the applications programmer and the op-

erating system on interprocessor message ordering and validity which holds in the presence

of arbitrary faults, and relieves the programmer from consideration of faulty behavior when

designing a distributed application. These guarantees arc embodied in the Byzantine Re-

silient Virtual Circuit (BRVC) abstraction of the FTPP and are explained in greater detail

below. Once again, the practical impact of this abstraction is the reduction of effort re-

quired to validate distributed applications software executing on the FTPP.

It has been suggested that Byzantine resilient systems are overdesigned because such

strange failure modes cannot occur in real life. On the contrary, we contend that odd unan-

ticipated failure modes occur often enough in practice that their probability of occurrence

cannot be dismissed, and that ultra-reliable computing systems must be able to tolerate

them. We present three examples as evidence.

At least one in-fllght failure of a triplex digital computer system was traced to an appar-

ent Byzantine fault and the lack of appropriate architectural safeguards against such faults

([Ma78], [La186b]). In circuit switched network studies at Draper, a failure mode was ob-

Page 3-6

served in which a faulty node responded to commands addressed to any node. The garbled

response resulted in identification of innocent nodes as failed, until more sophisticated tests

were carried out specifically with this failure mode in mind. A failed processor sending

different information to two other processors was observed in the SIFT computert.

Unless appropriate effort and architectural features are employed to survive, categorize, and

analyze failures, Byzantine failures are difficult to identify, making it likely that many other

undiagnosed cases of Byzantine failures have occurred.

Because such failure modes exist in practice, an ultra-high reliability system must be

able to tolerate them. Diagnosis of arbitrary failure behavior requires comparison of the

device under test with one having at least as many states [Sun74], implying that component

replication is required. The replicated components must be provided with bitwise identical

inputs, upon which they perform identical operations. Fault masking, detection, and diag-

nosis are obtained via bitwise comparison of outputs.

Several key issues arise from the requirement that the system must obtain bitwise con-

sensus on input information such as nonredund_t sensor data in the presence of Byzantine

failures. Specifically, Byzantine resilient input consensus protocols must be implemented.

Theoretical studies have resulted in several prerequisites for protocols which correctly

function in the face of arbitrary failure behavior by 'T' participants in the protocol. These

requirements, appropriate for deterministicand unauthenticated protocols, may be summa-

rized as:

1. There must be at least 3f+l participants in the protocol [Pc80].

, Each participant must be connected to each other participant through at least 2f+l

disjoint communication paths [Do182].

, The protocol must consist of a minimum of f+l rounds of communication among

the participants [Fis82].

. The participants must be synchronized to within a known skew of each other

[Do184].

? Personal communication with D. L. Palumbo, NASA Langley Research Center, 1987.

Page 3-7

A system which meets these prerequisites is called "f-Byzantine resilient." In a minimal

1-Byzantine resilient processing site, four participants, each of which is connected to each

other participant by three disjoint communication paths, must execute a synchronous two-

round protocol to obtain consensus in the presence of a Byzantine fault. The FTPP is de-

signed in accordance with these architectural precepts.

3.2. Physical Architecture

The basic unit of the FTPP is the cluster (Figure 3-2) which contains at least 4 Net-

work Elements and the associated Processing Elements. The Network Element (NE) is a

CSDL-designed component, at least 4 of which are fully connected and operate in tight

synchrony to perform message exchanges. Messages entering the NEs are exchanged and

voted according to the class parameter of the message. For instance, a source congruency

message requires 2 rounds of exchange within the Network Element core before the voting

process occurs, whereas a voted message requires only a single round of exchange. In

addition, since messages are addressed using virtual identifiers, the operation of the NE is

contingent upon the system configuration to identify the physical hardware associated with

the source and destination addresses.

In an FTPP cluster, each Network Element hosts up to 8 Processing Elements (PE)

each of which is a standard processor with local memory. Figure 3-2 shows a cluster con-

taining 4 PEs per NE. The prototype laboratory models have employed are Motorola

680x0 processors; however, this selection is not a design criterion and, in fact, the FTPP is

capable of supporting heterogeneous processors. Each Processing Element communicates

with the hosting NE via transmit and receive ports which the processors access via a stan-

dard bus such as VME, VSB, PI-Bus, Futurebus+, etc.

Page 3-8

Member of virtual
group Q1

Processing Element (PE)

NEA

Member of virtual
group Q1

Member of virtual
group Q1

NEC Network Element (NE)

4---- Fault Containment
. Region

Member of virtual

: group QI

Q1 Quadl
T1 Triplex 1
S1-9 Simplexes 1-9

Figure 3-2. FTPP Cluster Architecture

Each Network Element and the associated Processing Elements comprise a fault con-

tainment region which satisfies the requirements for fault containment, namely, electrical

isolation, physical isolation, independent power and independent clocking.

Virtual groups (VG) are logical views of the processing resources capable of accepting

work in a parallel processing environment. Using this concept, the physical addresses of

the Processing Elements as well as the redundancy level of a processing group are con-

cealed from the view of the programmer. A unique identifier is assigned to each Virtual

Group; this is the Virtual Group identifier (VID).

Page 3-9

''° 'l 2 '
VID

! NEA

3 2 I I 0

Figure 3-3. FTPP Cluster Architecture - Sample Configuration

Virtual groups are composed of from 1 to 4 Processing Elements; consequently, they

may be simplex, triplex or quadruplex. Within a VG, each Processing Element is a channel

(also referred to as a member). When operating redundantly, each processor within a VG

executes a suite of tasks which are functionally congruent with the other members of its

VG. On the other hand, simplex VGs are merely individual processors executing tasks

with no redundancy.

In order to satisfy the theoretical requirements of Byzantine resilience, VGs are com-

prised of Processing Elements each of which must be resident in a different fault contain-

ment region. For example, a quadruplex would comprise Processing Elements resident on

each NE.

Fault tolerance on the FTPP is ensured by grouping 3 or 4 Processing Elements into

VGs called fault masking groups (VG). Fault manifestations in a fault masking group can

occur without any degradation in system performance or correctness. Furthermore, these

faults can be readily diagnosed.

Page 3-10

QI

T1

$1

$2

$3

$4

$5

s6
$7

$8

$9

VID

12

9

1

2

8

4

5

0

3

11

10

A
i HI

B

number

0
i

0

C 3

D 0

A 1

B

D

2

1

A 1

A 3

D 3

D 2

C 1

B 2

C 2
B 3

C 0

Figure 3-4. FTPP Sample Configuration Table

The system configuration table is the mapping of Processing Elements to the Virtual

Group identifiers. This mapping identifies the NE hosting the Processing Element as well

as the port address through which the Processing Element communicates with the NE.

Since all communication within the system is based upon the VII), the system configuration

table is resident in the Network Elements as well as in the Processing Elements. Mainte-

nance of this table is provided by a special broadcast message interpreted by both Process-

ing Elements and NEs and by adherence to a strict protocol when the system configuration

is modified.

Figures 3-3 and 3-4 illustrate a sample system configuration consisting of 1 quadru-

plex, 1 triplex, and 9 simplexes.

3.3. Virtual Architecture

A parallel processor is usually characterized by a network that provides interconnection

between multiple processing sites. Data is passed between processing sites using a rues-

Page 3-11

sage-passing paradigm. In the FTPP, the ensemble of Network Elements provides a vir-

tual bus topology connecting the processing sites. The virtual bus topology of the FTPP is

shown in figure 3-5. This figure shows several example Virtual Groups.

OuldnJptex Simplex Triplex Qurldruplex Tdptex Triplex 81rnplox Simplex Simplex
VID l_l VID #20 VID #69 VID _ VID lle2S VID tiG VID ti_ VID _ VID #43

Network Element Virtual Bus

Figure 3-5. FTPP Virtual Configuration

3.4. Communication Mechanisms

Virtual groups communicate via messages which are of 2 basic categories: voted mes-

sages and source congruency messages. A voted message is sent by all members of a re-

dundant processing group. This message type is employed only when exact consensus

amongst all redundant members is expected. Conversely, a source congruency message is

originated by a simplex Processing Element or by a single member of a redundant process-

ing group requiring a channel-specific exchange of information. Congruency is a generic

term which connotes bitwise identical data and computational operations in nonfaulty mem-

bers of a redundant VG.

Each member of a VG requests a message transmission by sending the message body

to its associated transmit port followed by storing the message class in the associated class

port. If a majority of members of a VG request transmission, the class is voted by the NE

core to determine the exchange and voting mechanisms to employ. In addition, the desti-

nation VII) is also voted. Subsequently, the message body is handled according to the

message class which is of 4 basic types: voted messages, source congruency messages, a

synchronization message, and configuration update messages.

Message processing within the Network Element core is handled on a VG-by-VG ba-

sis. When a majority of the members of the source VG request transmission of a message,

that message is eventually processed and delivered to all members of the destination VG.

Page 3-12

The ordering of messages to the destination VG ispreserved, thereby guaranteeing that all

members of the destination VG receive messages in the same order.

Redundant members of VGs execute functionally congruent tasks. Functionally con-

gruent tasks are defined to be those which, given identical inputs, may be expected to pro-

duce identical outputs in the absence of faults. Since their sequence of tasks are congruent

across all members, messages transmitted during their normal executing cycles will neces-

sarily be equivalent as well. Therefore, the message streams emanating from the different

members will be identical at least in the message class when no fault exists. This concept is

the basis of functional synchronization which is discussed in a subsequent section.

3.4.1. Voted MessQges

When the redundant members of a VG transmit a class I message (voted message) the

NEs exchange their copies of the message, create a b_twise voted copy of the message, and

compare each copy with the voted copy. This final step generates a vote syndrome which

is delivered with the message. Network Elements which host members of the destination

VG deliver the message to the appropriate port; otherwise, the NEs discard the message.

As an example, Figures 3-6 through 3-gdepict the transmission of a voted message x

from triply redundant Virtual Group T1 to triply redundant Virtual Group '1"2. In the first

phase of the transmission, shown in Figure 3=6, the three members of TI each deliver their

copy of message x to their respective Network Elements. In the second phase, depicted in_

Figure 3-7, all Network Elements broadcast the message copy received from the Process-

ing Elements in the first phase to all other Network Elements. Note that Network Element

B broadcasts a null message (denoted "0" in the figure) because it does not host a member

of TI. Subsequent to the second phase of the transmission, all Network Elements

(including Network Element B) possess three Copies of the message, upon which they per-

form a bitwise majority vote to obtain the voted message denoted Xvowat. The null message

is not voted. Each Network Element which hosts a member of message recipient Virtual

Group "12 (Network Elements A, B, and D in this example) then delivers the voted mes-

sage to the Processing Elements comprising T2, as Shown in Figure 3-8. A Network Ele-

ment which does not host a member of the destination Virtual Group (Network Element C

in this example) discards the voted message.

Page 3-13

1234

NEA

Figure 3-6. Triplex Sender Delivers Class 1 Message x to Network Elements for Trans-

mission

N/:/A

X

43 21

Figure 3-7. Network Elements Perform Mutual Broadcast of Class 1 Message

i

Page 3-14

Figure 3-8. Network Elements Vote and Deliver Class 1 Message

..2. Source Con m'uency Messaees

Class2 messagescontainchannel-specificinformationsuchasthevalueofa processor

clock.The Network Elementsperform 2 rounds of exchange of thismessage,createa

bitwisevoted copy of the "reflected"copy and compare each "refiected"copy with the

votedcopy togeneratethevotesyndrome.Deliveryofthismessage tothedestinationVG

issimilartothatofa classI message.

SincetheNE corecan operateon only 1 message ata time,each member of a fault

masking group must agreeupon which member's channel-specificdata arebeing ex-

changed. This isachievedby thedefinitionof 5 differentclass2 messages. A "class2

from x" message identifiestheVG member inFCR x (thatis,on NE x FCR bus)as the

sourceofthemessage information.However, allmembers of theVG must participatein

thetransmissionof the"class2 from x" message. Thisrequirementisnecessitatedby the

factthattheNEs votethemessageclassfrom eachmember of thetransmittingVG. For a

VG withmembers on NEs A, B and D, ifone member transmitsa "class2 from A", the

secondmember sendsa "class2 from B" and thethirdmember sendsa "class2 from D"

simultaneously,therewould be no consensuson theclassofthemessage. A bitwisevoted

classisgeneratedand themessagesfrom eachmember ofthesendingVG arehandledac-

Page 3-15

cording to this voted class. Therefore, in order to perform an exchange of information

where each member receives each other's copy of some information, a series of messages

containing this information must be sent by each member of the VG. Each member of a

triply redundant VG must sequentially send a series of class 2 messages from each member

in order to completely exchange their non-congruent information.

Figures 3-9 through 3-11 depict the transmission of a class 2 message from Simplex

Virtual Group S 1 to Triplex Virtual Group T2. In the first phase of the transmission,

shown in Figure 3-9, S 1 tnnsfers the message x to its local Network Element. In the sec-

ond phase, shown in Figure 3-10, the Network Element hosting $1 broadcasts the single

message x to all other Network Elements. The Network Elements which do not host S 1 all

broadcast null messages, denoted by "0" in the figure. At the end of the broadcast phase,

each Network Element has a copy of the message x. Let xl, x2, x3, and x4 denote the

messages received in the first broadcast by Network Elements A, B, C, and D, respec-

tively. (Network Element A is considered to have included itself in the broadcast.) Note

that, in the presence of a Byzantine fault on the part of Network Element A, Xl through x4

may all be different. Consequently, a second broadcast phase is entered in which all Net-

work Elements broadcast the message received on the first round, as shown in Figure 3-

11. This phase is often denoted the "reflection" phase. After this second broadcast, all

Network Elements have a set of four messages which may be bitwise voted to derive

Xvoted. The delivery of the example class 2 message is identical to the delivery of a class 1

message depicted in Figure 3-8. Each Network Element which hosts a member of mes-

sage recipient Virtual Group "1"2(Network Elements A, B, and D in this example) delivers

the voted message to the Processing Elements comprising T2, as shown in Figure 3-8.

Again, a Network Element which does not host a member of the destination Virtual Group

(Network Element C in this example) discards the voted message.

Page 3-1¢_

Figure 3-9. Simplex Sender Delivers Class 2Message x to Network Elements for Trans-

mission

NE A

0

x 0

43 21

Figure 3-10. Network Element B Performs Initial Broadcast of Class 2 Message

Page 3-17

NH A

M

4321

Figure 3-11. Network Elements Perform Mutual Broadcast of "Reflected" Class 2 Mes-

sage

3.4.3. Synchronization Meseage

The synchronization message is a special message type which contains no message

body. It is employed as an expeditious synchronization mechanism among members of a

VG.

3.4.4. Confi_rafion Update Messgge

Since the NE core is cognizant of the mapping of VGs to physical hardware, a special

configuration update message is defined. This message is composed by a VG in a specific

format such that it can be intercepted by the NE core in transit to all VGs. The configura-

tion update is effective immediately.

3.4.5. Synchronization

The FTPP uses a scheme denoted Functional Synchronization to obtain synchronization

of processors composing a Virtual Group. In functional synchronization, events are

equated to the occurrence of unambiguously defined actions performed by the members of

a Virtual Group during the course of their normal task execution. For example, sending a

"Page 3" 18

message couldbe defined to constitute an event, as could reading an incoming message

buffer or rescheduling a process. A frame is defined by the occurrence of a specified num-

ber of these events. When the requisite number of events has mmspired, the VG executes a

synchronizing act, which defines the end of the old frame and the beginning of the new.

The purpose of functional synchronization is simply to reduce the skew existing between

VGs after a synchronizing act to a much smaller value than that existing before the syn-

chronizing act.

As an example of this idea, Figure 3-I2 shows the transmission and reception of a

message as constituting an event, with one event constituting each frame. However, in

functional synchronization, the number of events per frame need not be constant, and can

be a function of the length of the current frame (i.e., the time since the last synchronizing

act) or any other operational parameter. In addition, the frames of _ VGs have no

temporal relationship to each other. They may overlap, be of different lengths and period-

icities, and exhibit a high degree of disparity.

Three requirements are placed upon members of a VG participating in functional syn-

chronization. First, the members of a VG must exhibit a differential execution rate which

can be upper-bounded. A certain degree ofnondcterminism and heterogeneity is allowed

among the members of a VG, but the maximum difference between the execution rates of

the fastest and slowest members of a VG must be known. Second, the length of time be-

tween synchronizing acts must also be upper-bounded. A VG cannot continue forever

without performing a synchronizing act. The assertion that a VG meets the f'grst two re-

quirements implies that it is possible to upper-bound the time differential with which differ-

ent VG members arrive at a synchronizing act. Denote this maximum differential or "skew"

by O (Figure 3-12). Members that do not arrive at a synchronizing act within o time units

of a non-faulty member can be assumed to be faulty. The third requirement is that the

members of the VG must perform corresponding synchronizing acts in an identical order.

An additional requirement, not necessary to obtain functional synchronization but necessary

to obtain high coverage fault detection and masking via voting, is that a specifiable subset

of messages emanating from the members of a VG must have the characteristic that bitwise

agreement on message content implies non-faulty behavior, and bitwise disagreement im-

plies otherwise.

Assume that the members of a VG satisfy the conditions enumerated above. Each

member is further assumed to be executing a functionally congruent instantiation of a pro-

cess which can be unambiguously partitioned into segments. The partitioning may be either

Page 3-19

manual(the programmer uses a "perform synchronizing act" primitive) or automatic (the

compiler or operating system inserts synchronizing acts upon message transmissions, Re-

mote Procedure Call invocations, reading of an input buffer, etc.). Let traversal of a seg-

ment boundary constitute an event. Upon the occurrence of such an event, the copy of the

operating system resident on each member of the VG decides whether the occurrence of

this event is to constitute a frame boundary. As mentioned above, this decision may be a

function of the time since the last synchronizing act, the mission phase, or other operational

parameters. The only critical requirement is that all copies of the operating system come to

an identical conclusion about the status of the event. If the event is determined not to trigger

synchronization, the operating system returns control to the process, or, alternatively, to

another process awaiting scheduling. Again, all that matters is that these decisions are the

sarre in all members of the VG.

If the operating system instantiations determine that the event constitutes a synchroniz-

ing act, they trigger synchronization of the VG hosting the segment instantiations by

transmitting a message to themselves into the Network Element core and subsequently

awaiting the reception of that message. The difference in time between the delivery of

copies of a given message at all non-faulty Network Elements is very small. Therefore the

time differential with which the copies of the operating system perceive the arrival of the

message of interest is very smail (denoted 8 in Figure 3-12). Assuming that the operating

systems are awaiting this message, they will be synchronized upon its reception.

The Network Element core is a tightly synchronous, clock deterministic aggregate

which executes Byzantine Resilient clocking and consensus algorithms in dedicated hard-

ware and fh'mware. Regarding the present discussion, the Network Element core achieves

near-simultaneous delivery of the identical copies of a given message by delaying the

transmission and delivery of the message until the valid message condition is met by the

members of the VG. Satisfaction of the valid message condition depends on the redun-

dancy level of the Virtual Group which sourced the message. For a Virtual Group having

triplex or greater redundancy, the valid message condition is fulfilled when all members of

a group have requested transmission of a message, or a majority of the members of a group

have requested a message transmission and the maximum allowable skew between the

transmission of messages by non-faulty members, o, has expired. For a simplex group, a

message is transmitted as soon as the sole member of the group makes the request.

Page 3-20

n , ,,,i ,|1 nn nan i

Frame on
FMG Member

FMG !!_7. ,e,:eive __ receive

Member _,'_ wait _ compute __ wait

. . m ,, HFMG wait compum wait

U m N

"Absolute i_time

Figure 3-12. Functional Synchronization

The valid message condition is synchronously evaluated for all Virtual Groups by all of

the Network Elements in a cluster, using message transmission request patterns that are

obtained via a Byzantine Resilient interactive consistency protocol and which are therefore

identical at all non-faulty Network Elements. Therefore all Network Elements come to

identical decisions about which groups pass the valid message condition. Also by virtue of

the tight synchrony of the Network Element core, the message transmission and delivery

which may denote the completion of a VG's synchronizing act is performed at very close to

the same time in all Network Elements. Thus, VG members awaiting the completion of this

transmission perceive the completion at very close to the same point in time, and continue

with their execution with a temporal skew which has been reduced by the act of waiting for

the completion of the synchronizing act.

No a priori relationship is required between the frames of different VGs. This allows a

total decoupling of the operational characteristics of different VGs, while nevertheless al-

lowing them to be integrated into a single physical and logical entity in a conceptually co-

herent manner. Functional synchronization is conceptually transparent to the programmer,

who has the option of never knowing that certain acts like reading input message buffers

are events or synchronizing acts. In a distributed algorithm, the sending and receiving of

Page 3-21

messagesis likely to be frequent enough to obtain ample opportunity for synchronizing

acts. This is of course dependent on the application.

In AFrA, functionalsynchronizationisimplemented by theoperatingsystem by send-

ing a synchronizationmessage every minor frame. In order to reduce skew among the

members the operating system blocks awaiting returnof the synchronizationmessage.

This isdiscussedfurtherin section5. Inter-VirtualGroup synchronizationamong VGs is

prodded simply by sending messages. Each member of the sending VG transmitsa mes-

sage. The Network Element core distributes,votes,and deliversthemessage tothe desti-

nationVG asdescribedabove.

3.4.6. Bvzantine Resilient Virtual Circuit Abstraction

It is important to unambiguously express to the users of an architecture the fault toler-

ance properties that it embodies. The message passing properties of the FTPP can be con-

cisely expressed in an abstraction called the Byzantine Resilient Virtual Circuit (BRVC)

abstraction. This is a guarantee made to the applications programmer on interprocessor

message ordering and validity which holds in the presence of Byzantine faults, and relieves

the programmer from consideration of faulty behavior when designing a distributed appli-

cation. An instance of this abstraction is depicted in Figure 3-13, which shows two loosely

synchronized triplex Virtual Groups T1 and 'I"2, each of which contains a faulty member.

TI and T2 are sending messages a, c, x, and z to two other triplexes, "I'3 and T4, which

may also contain faulty members. In cases such as these the BRVC abstraction provides

the following guarantees:

1. Messages sent by non-faulty members of a source triplex are correctly de-

livered to the non-faulty members of recipient triplexes.

2. Non-faulty members of recipient triplexes receive messages in the order sent

by the non-faulty members of the source triplex.

3. Non-faulty members of recipient triplexes receive messages in identical or-

der.

4. The absolute times of arrival of corresponding messages at the members of

recipient triplexes differ by a known upper bound (_i in Figure 3-13).

Page 3-22

5. The time between a valid message transmission request and message deliv-

ery possesses a known upper bound (_ in Figure 3-13).

TI

12

Source VGs

messages

as messages
Sell[U

(assumed delivered
broadcast)

Member 2
I////////

Memberl / a

///////,t 1

Mcml_" 3 J

X Z

X Z

GSI2

L

w

x15
v

¢

Byzantine
Resilient

Virtual
Circuit

Abswaction

a

a

a

a

a

a

X

X

X

x

X

X

Destination VGs

Z

z

Z

C
k

C

C
F

Member I

////////
/Member 2
///////.

Member 3

Z C
v

Z C

y

Z C

_--8

Member 1

Member 2

¢//////
,Member 3 .
_///////

1"3

T4

Figure 3-13. Byzantine Resilient Virtual Circuit Abstraction

These guarantees on totally ordered and timely delivery are not typically made by paral-

lel processors even in the absence of faults.

3.4.7, Scooping

Using the BRVC abstraction and the idea of functional synchronization, a VG can per-

form a useful act called a scoop. A VG may be triggered to perform a scoop by a resident

process' request to update its input message buffer. It is critical that the message buffers of

all VO members possess identical contents to prevent divergence of any computation result-

ing from decisions based on those contents. Scooping uses the BRVC abstraction and

functional synchronization to obtain a consistently ordered and identical set of messages at

each VG member.

Page 3-23

FMG
Member

0

FMG
Member

1

FMG
Member

2

delivery
ot

message
A

W

_d

7
ii i

deSw.ry de5very descry
of of of

message message scoop
B C

aid

Nm
W

Figure 3-14. Scooping a Message

A VG performing a scoop takes advantage of BRVC by simply sending a message to

itself and awaiting its reception. By BRVC guarantee 3, all members receive identically or-

dered identical copies of each message. By guarantee 4, the absolute times of arrival of

each message, and in particular the scoop message, at the different VG members differ by a

known upper bound 8. Using these guarantees the recipient VG is assured that each mem-

ber of the VG has received an identical set of identically ordered messages before delivery

of its own scoop message. Therefore any decision made based on messages received prior

to a scoop reception will be congruent in all members. Upon delivery of the scoop shown

in Figure 3-14, each VG possesses identical input message buffers {A, B, C}. In addition,

the VG has executed a synchronizing act.

3.4.8. Input/Ou _tputRedundancy Management

The AFTA will interface to a wide variety of inputs and outputs. The objective of this

section is to describe the Input/Output process in the AFTA.

A given I/O process may select from among a number of I/O redundancy management

options, depending on the redundancy level of the input source, the redundancy level of the

VG which executes the Input/Output Request, the redundancy level of the source of the

output data, and the redundancy level of the VG for which the input data is destined. It is

expected that a given implementation of AFTA will utilize most if not all of these redun-

Page 3-24

dancymanagementoptions. Moreover,it is expectedthat several different I/O operations

will be in progress at a given time. All FO procedures depicted below are perfom_ trans-

parendy to the application programmer by the AFTA FO System Services.

A representative set of FO redundancy management policies has been defined under the

Conceptual Study. Each policy will now be de.bed. To allow relatively compact illus-

trations, a representative cluster containing four NEs and four PEs per NE will be used to

demonstrate the I/O processes. In addition, it is assumed that the VGs communicate with

the IOCs over the FCR backplane bus, In reality, I/O buses may be separated from the

F'CR backplane bus for I/O bandwidth enhancement.

Page 3-25

3.4.8.1. Input Procedures

3.4.8.1.1. Case I: Dumb lOC, Simplex Source in same FCR as lOC, Simplex Desti-

nation (same as source)

Simplex VGs may acquire input from an IOC resident in the same FCR. Neither the

operations performed by the simplex VG nor the IOC should be viewed as possessing a

significant degree of fault tolerance, so this operation would not be used for critical input

acquisition.

Step 1: Simplex source (VG 1 in Figure 3-15) accesses the I/O device in the same FCR

(IOCl, connected to NEO) to request the input.

Step 2:IOC1 provides the data to S 1 over the FCR backplane bus. S 1 can now use

the input data.

I

Stop 1:S1 Accesses lOCI Step 2:

k..Z

m

IOCl Provides Data to S1

Figure 3-15. Steps 1 and 2 - SI Accesses 10121 to Read Input Data

Page 3-26

3.4.8.1.2. Case 2: Dumb IOC, Simplex Source in same FCR as 10C, Simplex Desti-

nation (different from source).

A simplex VG may wish to acquire input data from an IOC coresidcnt in its FCR and

then transmit the possibly processed input data to another simplex in the AFTA. Since only

simplex sources and destinations arc involved, this procedure is not considered to bc fault

tolerant.

Step 1: Simplex source (VG I in Figure 3-16) accesses the I/O device in the same FCR

(lOCI, connected to NE0) to request the input.

Step 2:IOC1 provides the data to S1 over the FCR backplane bus.

Step 3:S1 performs Class 2 Exchange (refer to Section 3.4 for description of Class 2

Exchange) to deliver data to destination, say $9. $9 may now use the data.

m

Step 1:S1 Accesses IOC1

..Z
_2

m

Step 2: lOCI ProvidesData to SI

Figure 3-16. Steps 1 and 2 - S 1 Accesses lOCI to Read Input Data

Page 3-27

Step 3: Class 2 Round 1 Step 3: Class 2 Round 2

Figure 3-17. Step 3 - S1 Performs Class 2 Exchange, Rounds 1 and 2

Figure 3-18. Step 3 -

Step 3: Class 2 Delivery

S 1 Performs Class 2 Exchange, Delivery of Input Data to $9

Page 3-28

3.4.8.1.3. Case 3: Dumb IOC, Simplex Source in same FCR as IOC, Triplex Destination

This case comprises the procedure for unreliably reading and possibly processing input

data by a simplex VG and coresident IOC, followed by reliably distributing the data to a

triplex destination VG. The procedure described below guarantees that each copy of the

recipient triplex VG will receive identical (but possibly erroneous) input data.

Step 1: Simplex source (VG 1 in Figure 3-19) accesses the I/O device in the same FCR

(IOC1, connected to NE0) to request the input.

Step 2:IOC1 provides the data to SI over the FCR backplane bus.

Step 3: S 1 performs Class 2 Exchange (refer to Section 3.4 for description of Class 2

Exchange) to deliver data to destination, say T1. T1 may now use the data.

Note the similarity of Step 3 of Case 3 to Step 3 of Case 2. In general, S 1 must per-

form a Class 2 Exchange to deliver the data to any other VG in the cluster.

Step 1:$1 Accesses IOC1 Step 2:IOC1 Provides Data to S1

Figure 3-19. Steps 1 and 2- S1 Accesses IOC1 to Read Input Data

Page 3-29

Step3: Class 2 Round I Step 3: Class 2 Round 2

Figure 3-20. Step 3 - S 1 Perfo/'ms Class 2 Exchange, Rounds 1 and 2

i

Step 3: Class 2 Delive_

Figure 3-21. Step 3 - S1 Performs Class 2 Exchange, Delivery of Input Data to T1

Page 3-30

Case 4: Dumb IOC, Simplex Source in same FCR as IOC, Broadcast Des-

This case comprises the procedure for unreliably reading and possibly processing input

data by a simplex VG and coresident IOC, followed by reliably distributing the data to all

VGs in the AFTA. As in the previous case, the procedure described below guarantees that

each recipient VG will receive identical (but possibly erroneous) input data.

Proc u

Step 1: Simplex source (VG I in Figure 3-22) accesses the I/O device in the same FCR

(lOCI, connected to NE0) to request the input.

Step 2: lOCI provides the data to S1 over the FCR backplane bus.

Step 3:S1 performs Class 2 Exchange (refer to Section 3.4 for description of Class 2

Exchange) to deliver data to all destinations

1:S1 IOC1

Figure 3-22. Steps 1 and 2-

Step 2: lOCI Provides Data to S1

S 1 Accesses IOC 1 to Read Input Data

Page 3-31

Figure 3-24.

Figure 3-23. Step 3 -

Step 3 -

Class 2 Round 1 Step 3: Class 2 Round 2

S 1 Performs Class 2 Exchange, Rounds 1 and 2

Step 3: Class 2 Deliver),

S 1 Performs Class 2 Exchange to Deliver Input Data to All VGs

ii

Page 3-32

Case 5: Dumb IOC, Triplex Source in same FCR as lOC, Triplex Destina

In this case, one member of a triplex VG is coresident with an IOC which possesses an

input data that must be acquired and reliably distributed to all members of that VG. The

following Froeedure will guarantee that all members of the triplex VG will receive identical

copies of the input data. Note that since the IOC, its coresident member of the triplex VG,

or the NE to which they are attached may be faulty, the nonfaulty recipients may receive

identical but erroneous input data.

Step 1: Triplex source accesses the I/O device in the same FCR (IOC1, connected to

NE0) to request the input.

Step 2:1(3(21 provides the data to TI in NE0 over the FCR backplane bus.

Step 3:T1 performs Class 2 Exchange (refer to Section 3.4 for description of Class 2

Exchange) to deliver data to destination, say T1. T1 may now use the data. Note that any

other destination may be selected by T1 for the data, including all VGs in the AFTA (via the

broadcast packet exchange mode).

1:T1 on 2: lOCI Provides Data to T1 on NE0

Figure 3-25. Steps 1 and 2 - T1 on NE0 Accesses IOC1 to Read Input Data

Page 3-33

3: Class 2 1 3: Class 2

Figure 3-26. Step 3 - T1 Performs Class 2 Exchange, Rounds 1 and 2

Figure 3-27.

Step 3: Class 2 Delivery

Step 3 - T1 Performs Class 2 Exchange, Delivery of Input Data to T1

r

Page 3-34

3.4.8.1.6. Case 6: Dumb IOC, Simultaneous Input Reads by Triplex, Triplex Desti-

nation

In the previous example, only one channel of T1 (the one resident on NE0) accesses an

input device, followed by a Class 2 Exchange fromthat channel to distribute the input data

to the remaining members of the triplex T1. In some cases, it may be efficient for all mem-

bers of T1 to concurrently access input devices resident in their local FCRs and perform a

sequence of Class 2 Exchanges to distribute the data. These data may or may not necessar-

fly represent redundant inputs. The idea here is that they are all accessed at approximately

the same time, thus achieving a degree of parallelized input. If the IOCs do in fact represent

redundant input devices, it is likely that even if they were nonfaulty they would not agree

on a bit-for-bit basis. Therefore even in this case the following procedure must be exe-

cuted, followed perhaps by a sensor redundancy management algorithm (average, mid-

value select, etc.) on the three input data sets.

Step 1: All members of triplex source T1 access FCR-local I/O devices to request in-

puts. Thus, T1 on NE0 accesses IOC1, T1 on NE1 accesses IOC2, and T1 on NE3 ac-

cesses IOC4.

Step 2:IOC1 provides the data to T1 in NE0 over the FCR backplane bus in FCR0,

IO(22 provides data to T1 on NE1 over the FCR backplane bus in FCR1, and 10(24 pro-

vides the data to T1 in NE3 over the FCR backplane bus in FCR3.

Step 3:T1 on NE0 performs Class 2 Exchange to deliver its input data to its destina-

tion, say T1.

Step 4:T1 on NE1 performs Class 2 Exchange to deliver its input data to its destina-

tion, say T1.

Step 5:T1 on NE3 performs Class 2 Exchange to deliver its input data to its destina-

tion, say T1.

T1 may now use the three data sets. Note that Steps 3, 4, and 5 cannot be performed

concurrently.

Page 3-35

.. °, Step 1: All members of T1 Access IOCs Step 2 All Accessed IOCs Dchvvr Dam

Figure 3-28. Steps 1 and 2 - Members of T1 on NE0, 1, and 3 Simultaneously Access

IOC1, IOC2, and IOC4 to Read Input Data

Step 3:T1 on NE0 Class 2 Phase I Step 3:T1 on NE0 Class 2 Phase 2

Figure 3-29. Step 3 - T1 on NE0 Performs Class 2 Exchange Phases 1 and 2

]:'age 3-36

i

Step 3: TI on NE0 Class 2 Phase 3

Figure 3-30. Step 3 - TI on NE0 Performs Class 2 Exchange, Delivery of Input Data to

T1

N

i

Step 4:T1 on NE1 Class 2 Phase 1 Step 4:T1 on NE1 Class 2 Phase 2

Figure 3-31. Step 4 - T1 on NE1 Performs Class 2 Exchange Phases 1 and 2

Page 3-37

• . ; • ..

i• : _.

Step 4: TI on NE1 Class 2 Phase 3

Figure 3-32. Step 4 - T1 on NE1 Performs Class 2 Exchange, Delivery of Input Data to

T1

5:T1 on NE3 Class 2 Phase 1 Step 5:T1 on NE3 Class 2 Phase 2

Figure 3-33. Step 5 - T1 on NE3 Performs Class 2 Exchange Phases 1 and 2

Page 3-38

Figure 3-34.

Step 5:T1 on NE3 Class 2 Phase 3

Step 5 - T1 on NE3 Performs Class 2 Exchange, Delivery of Input Data to

T1

Page 3-39

3.4.8.2. Outplg Procedures

A VG in the AFTA performs output by writing data or commands to an IOC either over

the FCR backplane bus or over a local bus which is private to one or more PEs in a particu-

lar FCR.

3.4.8.2.1. Case 1: Simplex Source VG, Simplex IOC in same FCR as source VG

In this case, a simplex VG has an output datum it wishes to deliver to an IOC which

resides in the same FCR as itself. No inter-FCR exchanges are necessary to achieve data

consistency, so the simplex VG (say $9 in Figure 3-35) simply writes the datum to the cor-

responding IOC (say IOC4 in Figure 3-35). This is a non-fault tolerant operation and

would not be used for critical outputs.

Step 1: Simplex VG writes output data to simplex 10(2 over FCR backplane bus in

FCR3.

i i

2

Figure 3-35. Simplex VG $9 Writes Output Data to Simplex IOC4

Page 3-40

3.4.8.2.2. Case 2: Redundant Source VG, Simplex IOC in same FCR as one of VG

Members, Unvoted Output Data

In this case, a triplex VG, say T1, must write output data to an IOC which is coresident

in an FCR with a member of T1. In cases of noncritical outputs where the output data to be

delivered to the IOC need not be voted to mask _y computational faults the member of the

VG closest to the IOt2 (say TI on NE3) maywrite the data directly to the IOC (say IOC4

on NE3).

Step 1: TI on NE3 writes output data to IOC4 on NE3 over FCR backplane bus in

FCR3.

Figure 3-36. Triplex VG T1 Writes Unvoted Output Data to IOCA

Page 3-41

3.4.8.2.3. Case 3: Redundant Source VG, Simplex IOC in same FCR as one of VG

Members, Voted Output Data

In the event that it is necessary to mask any faults occurring during the computation of

the output to be delivered to an IOC, the redundant source VG must perform one or more

Class 1 Exchanges prior to delivery of the output data to the IOC. Note that the actual pro-

tess of delivering the output data to the IOC by its coresident VG member is not fault toler-

ant since either the IOC, the coresident VG member, the NE, or the bus interconnecting

them all may be faulty.

Step 1: Redundant source VG (TI in Figure 3-37) performs Class 1 Exchange of data

to be delivered to IOC (IOC4 in Figure 3-37).

Step 2: Member of redundant source VG coresident in same FCR as destination IOC

(T1 on NE3 in Figure 3-38) writes voted output data to the IOC (IO(24 in Figure 3-38).

iJ

Step 1:T1 Initiates Class 1 Phase 1 Step 1: NEs Perform Class 1 Phase 2

Figure 3-37. Step 1 - Triplex VG T1 Votes Output Data, Phases 1 and 2

Page 3-42

Figure3-38.

Figure 3-39.

1:T1 Performs Class 1 Phase 3

Step 1 - Triplex VG TI Votes Output Data, Delivery of Voted Data to T1

Step 2 - Triplex VG T1 on NE3 Writes Voted Output Data to IOC4

Page 3-43

3.4.8.2.4. Case 4: Redundant Source VG, Redundant IOC insame FCR as one of VG

Members, Unvoted Output Data

The previous cases dealt with outputs in which only one dumb IOC was driven by a

coresidentmember of a VG. Since in allthesecasesthe IOC and thecoresidentVG mem-

ber were nonredundant, the corresponding procedure was not fault tolerant. To achieve

fault tolerant outputs, redundant IOCs are necessary. In the case of redundant IOCs, it may

be necessary that a redundant source VO provide outputs to multiple IOCs at very close to

the same time. We illustrate with T1 providing near-simultaneous outputs to IOCs 1, 2,

and 4. In this case, no validation of the computational output by voting the output data is

perforn_d by TI.

Procedure

Step 1: Members of redundant source VG T1 on NEs 0, 1, and 3 concurrently write

output data directly to IOCs 1, 2, and 4, respectively, over the FCR backplane bus. Note

that the data to be provided to the different IOCs need not be identical; such would be the

case where for bandwidth reasons disparate outputs were_ to be asserted concurrently.

Figure 3-40. Redundant Source VG Simultaneously Writes Unvoted Output Data to Mul-

tiple IOCs

Page 3-44

3.4.8.2.5. Case5: Redundant Source VG, Redundant lOC in same FCR as one of VG

Members, Voted Output Data

In cases where it is necessary to first mask computational faults prior to asserting the

outputs, the redundant source VG must perform a Class 1 Exchange of the data to be out-

put prior to writing the output data to the multiple IOCs. Again, note that the (now voted)

data to be provided to the different IOCs need n_ be identical; the source VG would how-

ever have to separately vote the output data destined for each IOC.

Step I: Redundant source VG votes data destined for output IOCs.

Step 2: Redundant source VG members concurrently write output data to their respec-

tive IOCs over the FCR backplane bus.

1:T1 Initiates Class 1 Phase 1
m ,i

Step 1: NEs Perform Class 1 Pha:_¢ 2

Figure 3-41. Step 1 - Triplex VG TI Votes Output Data, Phases 1 and 2

Page 3-45

k

Step 1:T1 Performs Class 1 Phase 3

Figure 3-42.

Figure 3-43.

Step I - Triplex VG TI Votes Output Data, Delivery of Voted Data to TI

,, i i

Redundant Source VG Simultaneously Writes Voted Output Data to Multiple

IOCs

3,5. Operating System Architecture

The foundation of the operating system for the AFTA consists of a vendor-supplied

Ada Run-Time System and CSDL-supplied extensions based on recommendations made by

the Ada Run-Time Environment Working Group (ARTEWG). Additional features are re-

Page 3-46

quired to manage the plurality of AFTA resourcesin a manner appropriate to the mission

requirements. Services are provided in the following areaS:

• Task management, i.e., task identification, scheduling, dispatching,

suspension and termination

Inter-task and interprocessor communication

Input/Output services

Management of parallel and re,dundant resources according to speci-

fied mission reliability, availability, and performance objectives

Fault detection, identificationl transient discrimination, and recovery

throughout the maintenance _d operational modes of the system

Additional services include software exception handling and time services, i.e., initial-

ization of date and time from an extemai source, dissemination of current time and date,

manipulation of times, conversion of the internal time representation to character format.

3.5.1. Scheduline

AFTA is designed for hard real-time applications. A Rate Group scheduler has been

selected as the primary scheduling paradigm. This section discusses the rationale for the

selection of this paradigm and illustrates its use to achieve hard real-time response for peri-

odic and aperiodic hard real-time tasks.

3.5.1.1. _ D _et]nitions

For the subsequent discussion the following definitions are in effect.

Hard Real-Time System: A hard real-time system is characterized by the presence of

hard deadlines where failure to meet a deadline must be considered a system fault [SAE91].

In the AFTA context we consider the ex_ution_of hard real-time tasks, including input

and output functions. The real-time constraints include the lateneies from the system's in-

put sensors to its output devices or actuators,

The timing constraints of a task can be specified in terms of one or more of the follow-

ing parameters (similar to [Che87]).

Page 3-47

Task Arrival Time: The task arrival time is the time at which at ask is invoked by the

system. Task invocation may be due either to the occurrence of an external event, the oc-

currence of a specified time, or the sampling of an input from an external source.

_: A task's deadline is the time by which it must complete execution.

A periodic task is invoked exactly once per period P. The arrival time

of an execution of the periodic task specifies the time at which the execution of the periodic

task is invoked. The arrival times and deadlines of a periodic task execution with constant

periodPare

A(i+l) = D(i) (3. I)

D(i+l)= A(i+l)+ P (3.2)

where A(i) and D(i) are the arrival time and deadline of the i-th execution of the periodic

task, respectively.

Jitter is defined to be the difference between the minimum and the maximum

completion times of an event such as task completion or I/0 action, measured with respect

to a luted point in time such as a task arrival. For real-time control applications it is gen-

erally a quantity to be minimized.

d_,.._[/r..T_.g_: An aperiodic task, when invoked, is expected to execute exactly once,

and has an arbitrary arrival time. Aperiodic tasks may or may not have hard deadlines with

respect to invocation time.

Worst Case Computation Time: The worst-case computation time is an upper bound on

the execution time of a task.

Static Priori_ Scheduling: In static priority scheduling the relative priorities of tasks

are fixed prior to execution.

Dynamic Priori_ Scheduling: In dynamic priority scheduling the relative priorities of

tasks may be changed during execution of the task suite.

Mixed Priori_ Scheduling: A mixed priority scheduling scheme includes both static

and dynamic priority scheduling.

ill

Page 3-48

Preemptive Scheduling." A task is preemptible if its execution can be interrupted by

other tasks and resumed afterwards. A preemptive scheduler supports such preemption.

Nonpreemptiv¢ Scheduling: A task is nonpreemptible if it must run to completion or

self-suspension once it begins execution. A nonpreemptive scheduler does not support

preemption.

3.5.1.2. Requirements for Hard Real-Time Schedulers

Hard real-time schedulers must ensure that task executions, inter-task interactions, and

interactions between the tasks and the outside world are predictable and deterministic, with

guaranteeable worst-case response time. The means for validating this guaranteed response

time must be an integral part of the scheduling paradigm. The scheduling paradigm should

exhibit formal tractability to facilitate its formal specification and verification to reduce the

occurrence of scheduler design and implementation errors. The scheduler should enforce

the notion of"separation of concerns" to permit the combinatorially explosive validation of

a complex application to be accomplished via the more tractable option of validating its

constituent parts and their interactions. Guaranteeing these properties is often in direct

conflict with programming and maintenance ease. An engineering tradeoff must be per-

formed keeping in mind the disastrous ramifications of failure to meet a hard real-time

deadline and the high life-cycle cost of software maintenance.

3.5.1.3. Related Work

Relevant developments influencing the design rationale of the AFTA scheduler are out-

lined below.

3.5.1.3.1. Rate Monotonic Scheduling

The classic [Liu73] developed and analyzed a fixed priority preemptive scheduling pol-

icy in which tasks with higher request rates are statically assigned higher priorities, a policy

known as rate monotonic priority assignment. Under the assumption that tasks are peri-

odic, independent, and have no intertask data dependencies, [Liu73] showed that this

scheduling policy is optimal in that "no other fixed priority assignment rule can schedule a

task set which can not be scheduled by the rate-monotonic priority assignment." For a task

set of m such independent periodic tasks with fixed priorities, a least upper bound on

processor utilization was shown to be

Page 3-49

U(m) m (2 l/m- I) (3.3)

which, for large m, becomes

U(**) -- ln(2) = 0.693 (3.4)

If this utilization is not exceeded the tasks will always meet their deadlines. This bound has

been shown to be conservative [Leh87]. In practice, task periods which are harmonic or

nearly harmonic can result in utilizations whi_ch are often h!gher than 900.

3.5.1.3.2. MARS (MAintainable Real-time System)

The MARS (MAintainable Real-time System) [Kop89] is a distributed fault-tolerant

computer system for the control of hard real-time applications. It uses time-triggered static

preemptive scheduling and other concepts similar to the Ab'TA's RG scheduler. Tasks are

statically scheduled based on timer interrupts and their interactions with the outside world,

such as in tertask communication and input/output, are defined only at those interrupts.

This concept is called "temporal encapsulation" in [Kop89]. Temporal encapsulation is

similar to the concept of "segmentation," the dividing of system resources into discrete and

well-defined units, where the size of the unit is based on various criteria particular to the re-

source under consideration [Sta87]. In a hard real-time system time is clearly one of the

most important resources to segment.

In MARS, task execution times are upper-bounded using the technique described in

[Pus89] prior to (automated) schedule generation [Foh89]. Upper-bounds on task execu-

tion time are absolutely necessary to achieve a validatable ultra-reliable hard real-time sys-

tem. Unfortunately, under the current state of the practice, verification of maximum task

execution times is almost universally relegated to post hoc testing and validation. This

practice can not provide statistically adequate guarantees that hard real-time deadlines will

be met. In MARS, execution time bounding is facilitated since temporal encapsulation en-

sures that no delays due to communication and synchronization can occur during task exe-

cution. Prior to integration into a distributed system, each task is tested both in value and

time domains. Because of temporal encapsulation, one is assured that a task's behavior

when tested alone is identical to its behavior when integrated into the distributed system.

The MARS scheduling paradigm was demonstrated for a distributed hard real-time applica-

tion [Kop91] and it was found that

"Since the tasks have already been pretested in the domains of value and
time, the system integration was very smooth The considerable test ef-

ffage 3-50

fort, which normallyoccursduring system integration, all but disappeared

in this project. We assume that the temporal encapsulation of the MARS
components...leading to a minimal coupling between the components, [is]
responsible for this ease of implementation [Sch91]. Adding additional
functions...would be realized and tested within a few hours."

3.5.1.3.3. MPSA

Under the Integrated Airframe/Propulsion Control System Architecture (IAPSA) pro-

gram ([Coh90a], [Coh90b])the Draper Advanced Information Processing System (AIPS)

[Lal84] was evaluated as a candidate for integrated flight and propulsion control of a twin-

engine advanced fighter aircraft. The Draper Fault Tolerant Processor (FTP) was used as

the hardware platform and the AIPS Local System Services (LSS) [Bur89] were used to

provide scheduling of the tasks. The AIPS LSS provides an extremely flexible task

scheduling environment. Tasks can be scheduled according to priority, time, and event oc-

currence. Each task possesses a static priority and proceeds in a "run-until-blocked" mode

until one of the following conditions occurs:

1. task completion;

2. self suspension;

3. preemption by hardware interrupt;

4. explicit scheduling of higher priority task(s); or

5. time slicing of an equal priority task.

A task can schedule itself or other tasks according to time (one-shot or periodic) or

upon the occurrence of a software-defined event. The region of a task's periodicity can be

bracketed by time or events, i.e., via start/stop times or events. Extensions to the Ada run

time system were made to allow a task to schedule itself or another task cyclically, as the

result of an event, at an absolute time, immediately, or to deschedule a task.

3.5.1.3.4. Reliable Computing Platform

NASA Langley Research Center is developing a reliable computing platform (RCP)

[DiV90] to facilitate the development and demonstration of tools and techniques to support

the design of a fault tolerant computing platform for the execution of flight-critical functions

such as digital flight control. The RCP dispatches hard real-time control law application

tasks and executes them on redundant processors, The entire RCP is described using a hi-

erarchy of formal specifications - these levels include the uniprocessor model, the fault tol-

erant synchronous replicated model, the fault tolerant asynchronous replicated model, and

Page 3-51

the hardware/softwareimplementation. Formal verifications are used to rigorously
demonstratea correctcorrespondencebetweenany two adjacentlevelsof thedescription

hierarchy.

The mostimportantrequirementsof thecontrollaw applicationsfor whichtheRCPis
intendedarestatedto be:

1. theapplicationcomprisesa fixed set of tasks;

2. the tasks have hard deadlines;

3. multi-rate cyclic scheduling is required;

4. upper bounds exist on task execution time; and

5. tasks must communicate using some form of interprocess communica-

tion.

In [DiV90] it is argued that

"The design philosophy of the RCP is to design the system in a manner
that minimizes the amount of experimental testing required and maximizes
the ability to mathematically reason about correctness. The following de-
sign decisions have been made toward that end: ...the system is frame-syn-
chronous [and the] scheduling is static, non-preemptive..."

The use of the static non-preemptive scheduler is further justified as follows:

"...unfortunately the theoretical results can not guarantee that the hard
deadlines will be met for any of the non-static or preemptive algorithms ca-
pable of scheduling the real-time control application tasks [McE88]. Con-
sequently, all commercial aircraft control systems have been implemented
using a static, non-preemptive schedule table."

3.5.1.3.5. NASA Space Transportation System General Purpose Computer

The Space Transportation System (STS) General Purpose Computer (GPC) hosts per-

haps the most complex flight computer application ever developed. The two operating

system scheduling approaches considered for the STS GPC ([Car84], somewhat super-

seded by [Han89]) were a synchronous concept and an asynchronous priority-driven con-

cept. The synchronous approach was perceived to provide repeatability, predictability, and

visibility into system operations, attributes which ease system verification and validation,

but at the expense of adaptability for future growth. The asynchronous concept was

viewed as readily accommodating growth, but more difficult to verify because it was not as

predictable or repeatable as the synchronous scheme. The concept finally selected for the

primary system software was a hybrid approach which used a synchronous foreground ex-

Page 3-52

ecutivestructureanda background priority-driven asynchronous dispatcher. For the guid-

ance, navigation, and control functions, three rate groups are scheduled under the fore-

ground executive with iteration frequencies of 25 Hz for support of the basic vehicle flight

control, 6.25 Hz for intermediate-frequency functions, and 0.25 Hz for the display update

function.

3.5.1.4. AFTA RG Scheduler Overview

The AFTA supports two different styles of scheduling. The f'n'st, known as rate group

scheduling, is suitable for task suites in which each task has a well-defined iteration rate

and can be validated to have an execution time which is guaranteed to not exceed its itera-

tion frame (the inverse of its iteration rate). A modification of rate group scheduling dis-

cussed below also allows aperiodic hard real-time events to be processed. The second

style of scheduling, known as aperiodic non-real-time scheduling, is available when the it-

eration rate of a particular non-real-time task is unknown or undefined. Validation of the

temporal behavior of such tasks may be difficult. In AFTA, non-real-time al:_eriodic tasks

are not allowed to perturb the critical timing behavior of rate group tasks.

The basic executive of the AFTA is the XDAda RTS enhanced by CSDL. Or,_e of these

enhancements is a multi-rate group scheduler layered upon the XDAda run time e_ecutive.

In such a paradigm tasks executing on each VG in the Ab"I'A are characterized by a_n itera-

tion rate. In the AFTA, these rates are nominally 100, 50, 25, and 12.5 Hz, corresponding

to rate group identifiers R4, R3, R2, and R 1, respectively*. A rate group frame duration is

the inverse of the rate group iteration rate; thus the R4, R3, R2, and R1 frames are 10, 20,

40, and 80 ms in duration, respectively. All frame boundaries are determined by crystal

oscillator-controlled interrupts, as described below. The frequencies and number of rate

group frames are readily changed as the application dictates. Frames executing on different

VGs in the AFTA need have no particular phase relationship with each other, although a

desired phase relationship among certain frames may be enforced in some applications us-

ing the phasing method described below.

Within a particular rate group frame, tasks are scheduled using a nonpreemptive static

schedule. When scheduled, a task executes to self-suspension. The exact time of execu-

tion of a particular task in the rate group frame will be in general unknown to the applica-

* The origin of this unfortunate nomenclature is lost in the mists of antiquity.

_53-

tionprogrammer.Instead,AFTA guaranteesthatall taskswithin arategroupwill beexe-

cutedin theorderspecifiedby theapplicationprogrammersometimewithin theappropriate

rategroupframe. Figure3-44illustratesthebasicideaof a singlerategroup.

Beginning of End of Rate
Rate Group

Frame Group Frame

__ .._1
R4:10 ms
R3:20 ms I

R2:40 ms [
RI: 80 ms ITasks within Rate Group

lg)UtS

De/ivered
to Rate
Group
Tasks

Arbitrary Irara-Rate Group
Communication Possible within

Frame
Oc puts

Transmitted
from Rate

Group Tasks

Figure 3-44. Rate Group Frame - Programming Model

To achieve multi-rate group execution on a VG, lower frequency rate group tasks are

interrupted on a periodic basis to allow the higher-frequency rate groups to execute (Figure

3-45). The interruption process is transparent to the application programmer.

Task overruns are detected by the rate group dispatcher at the end of each RG frame.

Since all tasks within a frame nominally execute to self-suspension, the rate group dis-

patcher can detect a frame overrun by checking the suspension status of tasks which should

have completed an iteration in the preceding rate group frame. Note that since the task

which caused the overrun may have completed in the frame yet caused a subsequently-

scheduled task to overrun, this technique does not conclusively identify which task is re-

sponsible for the overrun. Identification of the culprit task is achieved by comparison of

the actual measurement of each task's execution time with its predicted execution time (note

that this information is already needed for construction of the task schedule). Several over-

run handling options exist and must be selected on a task-specific basis. Examples include

Page 3-M

1

aborting or restarting the culprit task, or resuming the preempted task from its preemption

point at the start of its next RG frame.

i

mlnor frame index:.

Figure 3-45. Architecture of RG Frames on a Single VG

Rate group scheduling may be viewed as a compromise between dynamic preemptive

and static non-preemptive scheduling. Within a rate group, a static nonpreemptive schedule

is followed. Higher frequency rate groups preempt lower frequency rate groups in a vari-

ant of rate monotonic scheduling [Liu73] modified for task suites having ham'_nic iteration

frequencies. Because they interact only on frame boundaries, the set of rate groups may be

viewed as a decoupled set of nonpreemptive tasks which may be formally treated indepen-

dently.

3.5.1.4.1. Intertask Communication

All communication to tasks within a rate group, whether from input devices, the Net-

work Elements, tasks executing in other rate groups on that VG, or messages emanating

from other VGs in the AFTA, is delivered and made available to the rate group tasks at the

beginning of their rate group frame, assuming it was sent in time to be received by the re-

cipient VG before the frame boundary. All communication emanating from tasks within a

rate group, whether sent to output devices, the Network Elements, tasks executing in other

rate groups on that VG, or other tasks executing on other VGs, is queued within the rate

group frame and transmitted at the end of that rate group frame. The single exception to

this rule is made for non-preemptible R4 tasks, which can send and receive messages at

Page 3-55

anytime. All messagesnot read by a RG task by the end of its frame can either be retained

or deleted, with appropriate notification given to the recipient task.

3.5.1.4.2. Overview of Minor Frame

A simplified description of the sequence of events occurring within a minor frame of a

single VG is depicted in Figure 3-46. The frame begins with a Frame Timer interrupt

which is generated by a crystal oscillator resident on each member of the VG. Immediately

after the Frame Timer interrupt, the VG synchronizes its members using a synchronizing

act as described in Section 3.4.5, and sets up the Frame Timer interrupt for the next minor

frame. This reduces the skew with which the members of the VG receive the next Frame

Timer interrupt to the Network Element's post-synchronlzation skew plus the crystal oscil-

lators' drift over the frame.

After the synchronizing act, the I/O Dispatcher performs all I/O activity as close as

possible to the synchronizing act in order to minimize I/O jitter. For I/O performance rea-

sons, it is possible for each member of a VG to perform different I/O transactions and thus

not to be in synchrony after performing such operations. Therefore an I/O Completion in-

terrupt is scheduled on all VG members at a known time after the Frame Timer interrupt in

order to snap them back into synchronization. The Frame Timer - I/O Completion interrupt

interval may vary for each frame based on the I/O transactions performed in that frame, and

is determined by the most lengthy set of transactions the VG's members must perform.

This interrupt is generated by a crystal oscillator on each VG member.

After the 1/O Completion interrupt another VG synchronization is performed by the

Task Dispatcher, and messages queued for transmission by rate group tasks which com-

pleted in the prior frame are transmitted to the Network Element. Messages are also read

from the NE to the VG at this time, among others. The FDIR task (also known as Redun-

dancy Management, or RM) is scheduled after message passing, followed by the I/O

Source Congruency and Redundancy Manager and I/O Processing tasks. The I/O tasks are

responsible for transmitting single-source input data from one member of the VG to the

others, I/O Controller/Device error processing, and deriving and formatting a known good

copy of redundant input data for delivery to the destination application task. The I/O Pro-

cessing task is also responsible for transmitting predetermined input data from one VG to

another.

Page 3-56

t

• . .. • '"

After the I/O tasks execute, theapplicatio, tasks are scheduled and execute according_

the rate group scheduling paradigm until the next Frame Timer interrupt.

i - -i= i,

(not to scai'e)

Frame Timer I/O Completion Frame Timer

Rupt, Timer Rupt, Rupt, •

VG Sync VG Sync VG Svnc

I/O

Transacl
Dispatcher

>lication

RG1..4 Queued Message Passing
(R4 tasks may perform message

,,,passin@ at an_ time)

Figure 3-46. Overview of Minor Frame

3.5.1.4.3. Preemptive Rate Group Scheduling

The implementation of preemptive rate group scheduling is depicted in Figures 3-47

through 3-53. Figure 3-47 illustrates a schedule containing only the Dispatcher executing

on a VG; Figure 3-48 illustrates a schedule containing the Dispatcher and the RM task; Fig-

are 3-49 illustrates a schedule containing the Dispatcher, the FDIR task, and the R4 tasks

executing on a VG. The remaining rate groups are presented similarly in Figures 3-50

through 3-52_ Figure 3-53 contains a schedule showing the execution of all rate groups

and background tasks.

Page 3'57

Figure 3-47.

I
j

Rate Group _ - Dispatcher Task O-'h'i'y

Page 3-58

!
Schedule - Dlsp_r+FDIR

Page 3-59

!
_p Sch_IR + _ Tasks

Page 3-60

s

lx\\\\Xl

!
Dispatcher+FDIR + R + Tas s

Page 3-61

Figure 3-51.

IHIII

!

b

s
_J

J,
III

I
Rate Group Schedule '- Dispatcher+FDIR + R4 +R3 +R2 Tasks

Page 3-62

_J

8

I
Figure 3-52. Rate Group Schedule - Dispatcher+FDIR + R4 +R3 +R2 +R1 Tasks

Page 3-63

IF

!
j

Figure 3-53. Rate Group Schedule - Dispatcher+FDIR + R4 +R3 +R2 +R1 + Background
Tasks

3.5.1.4.4. Aperiodic Hard Real-T_e Task Scheduling

The AFTA scheduler supports the ex_ution of event-triggered hard real-time aperiodic

tasks by statically assigning the processing associated with each given event with an RG.

An appropriate RG is determined a priori by the maximum allowable time between the oc-

currence of the event and the VG's output response. Events may of course occur at any

time, The AFTA Input/Output System Service (IOSS) is scheduled at the beginning of

each frame and is responsible for reading the status of any events to be processed in subse-

quent frames. Thus there is at most one minor frame's latency between the time of an

event's occurrence and the time at which the IOSS processes the event for delivery to the

destination task, An event processing task may be assigned to rate groups 1 through 4, in

some cases preempting iterative tasks as outlined below. Multiple event processing tasks

may be scheduled on a VG. The following table illustrates the maximum event response

time as a function of the RG containing the event processing task.

Rate Group

r 1
L 2

3

Maximum Event Response
Latency, # Minor Frames

16
8

4

Maximum Event Response
Latency, ms

. (10 ms Minor Frame)
160

80

40

4 2 20

Table 3-1. Maximum Event Response Latency vs. Rate Group

Figure 3-54 shows an event occurring in frame 0 of a rate group schedule. If the event

processing task is in R4, then the response from the event is delivered at the end of frame

1. If the task is in R3, the response is delivered at the end of frame 3. If the task is in R2,

the response is delivered at the end of frame 7, and if the task is in R1, the response is de-

livered at the end of frame 7 of the subsequent major frame (not shown in the figure).

Hard real-time event processing tasks are assigned to Rate Groups and are scheduled

based on the occurrence of the events they are designed to handle. The arrival of a high-

priority event and the consequent scheduling of an event processing task may perturb the

timing of periodic tasks. Several options exist for scheduling event-triggered hard real-time

aperiodic tasks.

One may validate the task suite's execution time upper-bound in the presence of all

"valid" event combinations. The advantage of this approach is predictability and validata-

Page 3-65

bility for foreseen event suites. The programmer need not worry about frame slippage due

to event-based preemption. The disadvantages are potential poor processor utilization, un-

defined or unpredictable behavior should an unforeseen event suite occur, and lengthy vali-

dation.

Event

1

R4 Event

Processin¢

om
R4 Event R3 Event R2 Event

Processing Processing Processing

-latency _ 2 -latency _ 2 -latency _ 2
R4 frames R3 frames R2 frames

!

-RI Events Processed durlng next RI frame

-latenc_ _ 2 RI frames

Figure 3-54. Scheduling of Event-Triggered Hard Real-Time Aperiodic Tasks

Alternatively, depending on the event to be processed, one can deschedule one or more

selected periodic tasks of equal or higher iteration rate. This can be done by the RG dis-

patcher function. For example, an event which must be processed in an R3 frame (i.e., a

maximum response time of 40 ms) could cause an R4 task to be descheduled, or it could

cause an R3 task of higher precedence order to be descheduled. These preemption trades

must be selected beforehand at the time the application designer defines the relative impor-

tance and urgencies of the various conditions facing the computing system, rather than

waiting until system integration time to perform empirical determinations of whether the

real-time responses to external events are met, followed by adjusting task priorities accord-

ingly. The effect of frame slippage on the descheduled tasks must be defined and tolerance

Page 3-66

meansmust be developed. After event processing completion, the descheduled iterative

tasks must be rescheduled for resumption.

It is critical that, regardless of the selected option, periodic and aperiodic hard real-time

task aggregate execution times must be validated to meet all real time constraints.

3.5. 1.4.5. Aperiodic Non-Real-Time Task Scheduling

Aperiodic tasks which do not have hard real-time constraints are executed after all rate

group tasks (including aperiodic hard real-time tasks) have been executed. There may be

several non-real-time aperiodic tasks running on a VG and they may be scheduled arbitrar-

ily (unprioritized round-robin, multi-level prioritized, etc.). Messages and I/O operations

emanating from aperiodic tasks are handled di_ff.erently from those emanating from RG

tasks. When an aperiodic task wishes to transmit a message or execute an I/O operation,

the message is appended to an asynchronous queue specific to that aperiodic task. On ev-

ely frame, the dispatcher task performs a series 0f Class 2 Exchanges regarding the status

of this queue to determine if all copies of the aperiodic task have requested the message

transmission, or if a majority of the copies have requested the transmission and a suitably

long timeout interval has expired such that the minority of the copies can be presumed to be

faulty. If either of these conditions are met, the dispatcher transmits the message.

The aperiodic task timeout calculation is based on the amount of processor time the task

consumed since its last synchronization act. This quantity defines the elapsed execution

time of the task. All copies of the task may not have identical elapsed execution times, so a

fault tolerant algorithm must be employed to exchange and agree upon a valid execution

time. Given that all copies of the dispatcher agree upon a valid elapsed execution time, the

timeout may be calculated if the amount of ske w bui!dup per processor time unit is known.

3.5.I .4.6. Execution of RGs on Multiple VGs

Due to the parallel nature of AFTA, different VGs will execute different RG task suites.

Mapping a multi-VG multi-RG task suite onto multiple VGs can be performed using appli-

cation task-to-parallel processor mapping technology embodied in an integrated schedule

generation and analysis tool. Task suites are expected to change as a function of the mis-

sion mode and system state. This will give rise tomultiple mappings. Each such mapping

must be created using the schedule generation and analysis tool. Moreover, the valid tran-

sition sequences from one such mapping to another must be carefully defined and imple-

mented so as to continue to meet real-time reftuirements during the transition period.

Page 3--67

Therategroupphasing describes the relationship between the rate group frames on dif-

ferent VGs in the system. Within the tas k configuration table, each task is assigned to exe-

cute in some rate group. The rate group determines the frequency at which the task will be

executed and the resulting rate group frame delimits the execution cycle of the task. Tasks

assigned to the same rate group will execute at the same frequency regardless of their host-

ing VG, but there may be a time difference between the start of their first and each subse-

quent rate group frame if the tasks are executing on different VGs. This phasing would be

caused by the completion of system initialization at different times on different VGs. An

example phasing of the frames for tasks in a given rate group on multiple VGs is shown in

Figure 3-55.

In the example, the first rate group frame on VG 1 starts at the base time and the first

rate group frames on the remaining VGs are delayed. The interval between the base time

and the start of the first rate group frame is the VG's phase delay. The phase delay is im-

portant because it determines the relationship between the frame in which messages are sent

and the frame in which they are received. It also effects the degree to which the different

VGs contend for the Network Elements and other physical resources. This is also affected

by the message passing restrictions in the rate group tasking paradigm. In the paradigm, a

task's queued messages are only sent and its received messages are only made available at

its corresponding rate group frame boundary. This is indicated in the figure by the arrows

at the frame boundaries. An example from the figure is the messages transmitted after the

first frame on VG 1. They will be received at the start of the first frame on VG2 and VG4,

but will not be received until the start of the second frame on VG3. This relationship of

sending frame to receiving frame will remain constant for subsequent frames if the phasing

does not change.

Unfortunately, the phasing will change if the start of subsequent rate group frames on

different VGs are allowed to float with respect to each other. The time management service

(embodied in the rate group dispatcher task) has been designed to minimize this float by

locking the phase to the system time maintained by the Network Element. There still re-

mains inherent float because of the variability of the interval from the start of the frame to

when any given message will be sent or read. This float is increased when VGs which

share a Network Element have the same phase delay or their delays differ by an integer

number of minor frames. This is because the VGs are then forced to compete for access to

the Network Element to send and read their messages at their frame boundary. For this

reason the simplest phasing of a zero phase delay for all VGs is not recommended. The

Page 3-68

phasefield in the VG configuration table is provided to specify the desired phase delay for

each VG.

IIIIIIIIIllllillfl

VGI VG2 VG3 VG4 base time
r_Ii_iI_IIiiIIIi_I_i_W"_1_H_Ii_lIiIIII_IiIii_I_IlIII_iI_"II|_I_IIllI_i_IlIIIII_IiI_II_Iii_Iii_I!I_H_I_I_Ii_

phase

•........................,.....,,.,.o,,.,,,,,,.,o,o.,...o,..o.o,.,.,,...,o...o.,...

t !me

...............Ira-............... _.,

Figure 3-55. Phasing of RG Frames on Multiple VGs

3,5,2, Fault Detection, ldgn_ification and Recovery Overviqw

AFTA uses hardware redundancy with fault detection and masking capabilities to pro-

vide fault tolerance. While the hardware alone in AFTA could sustain a single fault, the

Fault Detection, Identification and Recovery (FDIR) software allows it to sustain multiple

successive faults by identifying a faulty component and eliminating that faulty component

from the AFTA system operation, thereby restoring AFTA to its original fault tolerance ca-

pability.

AFTA achieves its reliability by testing itself through various means and by monitoring

inherent fault detection mechanisms such as the NEs' message voters. When a fault is de-

tected and isolated to a specific component, that faulty component is disabled in order to

maintain a system of high reliability. Because reliability of the system is of utmost impor-

tance, AFTA is thoroughly tested to eliminate faulty components from the operationalsys-

tem. This testing occurs at all stages of AFTA's operations. As the computing system

proceeds through the various operating modes from an initial power on state to a fully op-

Page 3-69

erational mode,the testingmethodologyalsoevolvesthroughvariousmodesof testing
commensuratewith theoperationalconstraints.During eachtestingmode,suitesof tests

areactivatedto exerciseall AFTA componentsbothindividuallyandsystematicallyascom-

prehensivelyaspossible. Specifically,thereare3 testmodes- initial power-ontestmode
(I-BIT), line maintenancetestmode(M-BIT), andcontinuoustestmode(C-BIT)- and3

systemmodes- poweron, standby,andmissionoperational. Figure3-56 depictsthe in-

teractionof thesystemandtestmodes.

& system/

(
power on

Q_Z/

system ,

operator
inidated

mission

completed

Figure 3-56. System mode and test mode interactions

During each of these test modes both component level tests and system level tests are

executed. The component level tests exercise the individual AFTA components whereas

the system level tests employ the inherent fault detection capabilities and the operating char-

acteristics of AFTA to identify faulty components. However, during each system mode,

the time constraints, the requirements on maintenance of mission critical information, and

the system configurations differ. Consequently, the tests executed during each of the test

modes vary based upon these factors. The constraints on these test modes and the delin-

eation of the tests executed during the various test modes are discussed extensively in Sec-

tion 5.6.

The fault detection, isolation and recovery task is responsible for testing of all compo-

nents of AFTA during all system modes. It tests all AFTA components during the power

on sequence and invokes a more comprehensive set of tests when directed by a line mainte-

Page 3-70

nanee operator. During mission critical operational mode it continuously monitors fault

detection mechanisms and performs self testing.

When a faulty component has been identified, FDIR initiates an appropriate recovery

strategy which attempts to compensate for the loss of a component. The variety of recov-

ery strategies is numerous not only because the policy must be commensurate with the type

of component failed but also because of the system requirements and the mode of opera-

tion. The array of recovery policies includes a strategy to replace a faulty Processing Ele-

ment with a spare Processing Element, an option to migrate a task when its Processing El-

ement fails, and a policy to quickly mask the incorrect behavior of a failed component.

As faulty components are identified and eliminated from the operational AFTA system,

FDIR maintains logs of these faults to aid in th¢_ of maintaining the AFTA hardware.

These logs identify the line replaceable module deemed faulty and provide detailed diag-

nostic information, to the chip level whenever possible. The FDIR task reports this infor-

mation to line maintenance personnel upon request.

3.5.3. Input/Output Services

AFTA interfaces to a wide variety of inputs and outputs. AFTA YO is accessed

through I/O Controllers (IOCs) which, in the Brassboard, reside on the FCR backplane bus

connecting the PEs and the NEs. IOCs can either be simplex or redundant. They may also

either be members of a specially-designated I/O VG or may be controlled over the FCR

backplane bus (or auxiliary bus) by one or more designated PEs.

Desired characteristics of the AFTA I/O process are that the load modules of different

members of a redundant VG must be identical, even if only a subset of the members actu-

ally execute the I/O operation. The second requirement is that the control flows of redun-

dant VGs executing I/O be similar if not identical, even if only a subset of the members ac-

tually execute the I/O operation; heterogeneous I/O must not be allowed to induce sufficient

skew to force the desynchronization of a redundant VG. Finally, when redundant I/O is

accessed, it is important that the copies of the I/O device be accessed at very close to the

same time. To minimize jitter, it is planned that all I/O activity will be synchronized with

frame boundaries

Page 3-71

!

• t¢

r,

[.,

3.6. The Role of Standards in the AFTA

The validity and applicability of the AFTA architectural concept is intended to be inde-

pendent of prescriptive engineering standards which may apply to various applications.

The ability to comply with differing standard suites without belying the validity of the

AFTA architectural concept is indeed one of the strong points of the AFTA architecture,

and is intended to give it a degree of universal applicability.

A given AFTA implementation is constructed under due compliance with the standards

asserted by the procuring agency. Standards may exist singly or may be aggregated into

suites, and may apply to commercial, military, space, and other applications. For the pur-

poses of AFTA, we are primarily interested in existing or emerging standards which apply

to military applications. Standard suites may include backplane buses, Instruction Set Ar-

chitectures (ISAs), programming languages, interconnection network hardware and

topologies, physical dimensions, connectors, communication protocol stacks, operating

system services, and development, testing, and documentation procedures.

Standards serve several valuable purposes. They assist in fixing unknown design pa-

rameters, thus removing many uncertainties regarding design. This in turn allows educated

estimations of critical system parameters at an early enough stage in the design to detect and

rectify potential problems. The existence of standards implies the existence of large body

of standard AFTA building blocks such as processors, input/output devices, interfaces, and

software. This results in the potential for low prototyping and procurement costs, and the

components' maturity reduces the probability of design flaws. The availability of mature

standards-compliant components substantially reduces the risk, schedule, and cost involved

in utilizing them in AFTA. As higher performance, lower cost, more reliable, etc. stan-

dards-compliant components are developed, AFTA can be upgraded, thus leveraging ad-

vances in microelectronics technology.

3.7. Relationship of AFTA to the Advanced Information Processing Sys-

tem

Over the past few years NASA and the Strategic Defense Initiative Office (SDIO) have

sponsored the Advanced Information Processing System (AIPS) program at Draper Labo-

ratory. The overall goal of the AIPS program is to produce the knowledgebase necessary

to achieve validated distributed fault tolerant computer system architectures for advanced

real-time aerospace applications [Har91b]. As a part of this effort, an AIPS engineering

Page 3-72

model consisting of hardware building blocks Such as Fault Tolerant Processors and Inter'-

Computer (IC) and Input/Output (I/O) networks and software building blocks such as Lo-

cal System Services, IC and I/O Communications Services was constructed. Figure 3-57

shows the laboratory configuration of the engineering model. It consists of three triplex

FTPs and a simplex processor interconnectedby a triplex IC network. The IC network

was designed with 5 nodes in each layer. Each node services one processing site. One of

the nodes in each layer was left unused for expandability. Figure 3-58 shows how the

FTPP, which can be considered one of the AIPS building blocks, can be interfaced to the

AIPS IC network. A node from each of the three IC layers would interface with an ICIS-

like I/O controller in a different fault containment region of the FTPP. The I/O controller

will be designed to participate in the modified Laning Poll contention scheme used to arbi-

trate access to the AIPS IC network.

As an illustration of the use of the AIPS building blocks, including the FI'PP, for an

advanced aerospace application, consider the Advanced Launch System. The AIPS build-

ing blocks and the knowledgebase were used to synthesize an avionics architecture for the

Advanced Launch System (ALS) [Lal91]. The architecture consisted of a quadruply re-

dundant bi-processor (two processors per channel) for the core avionics functions and a

triplex processor for each engine, all networked together by the IC network. With the

availability of the FTPP, the core avionics FTP can be replaced with an FTPP consisting of

four Network Elements each of which services two processors. This will provide the re-

quired reliability, availability and throughput but, unlike the FTP, can be built out of NDI

components.

Page 3-73

I/O NETWORK

15 NODE CONFIGURATION

!
I/O

Device

FTP 4

M LAYER

I! A_,"ll! s, ='llic ,r'*1
[zos II zos II zos I

I/O
Devices

Triplex
Inter-Computer

Network

Simplex 1

I zos]

N LAYER

_P3 _P2

Figure 3-57. The Advanced Information Processing System Engineering Model

Page 3-74

VONETWORK

15 NODE cONFIGURATION

ICIS

ICIS

ICIS

FTP4

Tdplex

FTP3 FTP2

Figure 3-58. Interface Between AFTA and the Advanced Information Processing System

Engineering Model

Page 3-75

This page intentionally left blank.

Page 3-76

Appendix A. References

[Ab188] Abler, T., A Network Element Based Fault Tolerant Processor, MS
Thesis, Massachusetts Institute of Technology, Cambridge, MA,
May 1988.

[AMD89a] The SUPERNET Family for FDDI, Advanced Micro Devices Data
Book, Publication # 09734 Rev. C, February 1989.

[AMD89b] Am7968/Am7969-175 TAXlchip TM Integrated Circuits, Advanced
Micro Devices Data Sheet, Publication # 12834 Rev. A, November
1989.

[ANSI139] "Fiber Distributed Data Interface (FDDI) - Token Ring Media Ac-
cess Control (MAC)" American National Standard, ANSI X3.139-
1987, November 5, 1986.

[ANSI148] "Fiber Distributed Data Interface (FDDI) - Token Ring Physical
Layer Protocol (PHY)," American National Standard, ANSI
X3.148-1988, June 30, I988.

[ANSI166] "Fibre Data Distributed Interface (FDDI) - Token Ring Physical

Layer Medium Dependent (PMD)," American National Standard,
ANSI X3.166-1990, September 28, 1989.

[APS90] Acarlar, M. S., Plourde, J. K., Snodgrass, M. L., "A High Speed
Surface-Mount Optical Data Link for Military Applications,"
IEEE/AIAA/NASA 9th Digital Avionics Systems Conference Pro-
ceedings, October 15-18, 1990, p. 297-302.

[Bah90] Babikyan, C., "The Fault Tolerant Parallel Processor Operating
System Concepts and Performance Measurement Overview," Pro-
ceedings of the 9th Digital Avionics Systems Conference, October
1990, pp. 366-371.

[Ber87] Bertsekas, D., Gallager, R., _, Prentice-Hall, 1987.

[Ber90]

[Bev90]

Berger, K. M., Abramson, M. R., Deutsch, O. L., "Far-Field Mis-
sion Planning for Helicopters," CSDL Technical Report CSDL-R-
2234, March 1990.

Bevier, W.R., and Young, W.D., "The Proof of Correctness of a
Fault-Tolerant Circuit Design," 2nd International Working Confer-

ence on Dependable Computing for Critical Applications, Tucson,
AZ, February 1991.

[Bic90] Bickford, M., and Srivas, M., "Verifying an Interactive Consis-

tency Circuit: A Case Study in the Reuse of a Verification Technol-
ogy," NASA Formal Methods Workshop 1990, NASA Conference
Publication 10052, November 1990.

Page A- 1

[Biv88]

[Bla91]

[Boo88]

[Bur89]

[But88]

[CAMP]

[Car84]

[Cha84]

[Che87]

[Coh87]

[Coh88]

[Coh9Oa]

[Coh9Ob]

[Cohn881

Bivens, G. A., "Reliability Assessment of Surface Mount Technol-
ogy (SMT)," RADC report RADC-TR-88-72, March 1988.

Black, Uyless, OSI : A Model For Comput_l: Communications
_, Prentice-Hall, 1991.

Booth, F., "Advanced Apache Architecture," 8th Digital Avionics
Systems Conference, October 1988.

Burkhardt, L., Advanced Information Processing System: Local
System Services, NASA Contractor Report 181767, April 1989.

Butler, R. W., "A Survey of Provably Correct Fault Tolerant Clock
Synchronization Techniques," NASA Technical Report TM-
100553, NASA Langley Research Center, February 1988.

CAMP-1 Final Technical Report AFATL-TR-85-93, 3 Volumes,
Available as DTIC AD-B102 654, AD-B102 655, and AD-B102
656 from Defense Technical Information Center, Alexandria, VA
22304-6145.

Carlow, G. D., "Architecture of the Space Shuttle Primary Avionics
Software System", Communications of the ACM, 27(9):926-36,
September 1984.

Chambers, F. B., ed., Distributed Computing, Academic Press,
1984.

Cheng, S-C., Stankovic, J. A., Ramamritham, K., "Scheduling
Algorithms for Hard Real-Time Systems - A Brief Survey," in Hard
Real-Time Systems, IEEE Computer Society Press, 1988.

Cohn, Marc D., "The Conformance of the ANSI FDDI Standard to

the SAE-9B HART High Speed Data Bus Requirements for Real-
Time Local Area Networks," Society of Automotive Engineers
Aerospace Systems Conference Proceedings, November 1987.

Cohn, Marc D., "The Fiber Optic Data Distribution Network: A
Network for Next-Generation Avionics Systems," AIAA/IEEE 8th
Digital Avionics Systems Conference Proceedings, October 17-20,
1988, p. 731-737.

Cohen, G. C., et. al., Design of an Integrated Airframe�Propulsion
Control System Architecture" NASA Contractor Report 182004,
March 1990.

Cohen, G. C., et. al., Final Report: Design of an Integrated Air-
frame/Propulsion Control System Architecture, NASA Contractor

Report 182007, March 1990.

Cohn, A., "Correctness Properties of the Viper Block Model: The
Second Level," Tech. Report 134, Univ. of Cmabridge, Cam-
bridge, England, May 1988.

Page A-2

[Corn91]

[CSDL9214]

[Cullyer 88]

[CVC2]

[DACS]

[Da173]

IDeu88]

rDID808 _ 1]

l vgo]

[DiV91I

1Do182]

[Do1841

[Fel90]

[Fis82]

Comer, D. E., Internet_orking with TCP/IP, Prentice-Hall, 1991.

Completion of the Advanced Information Processing System, re-

sponse to NASA Langley Research Center, CBD Announcement
REF SS017, issue PSA-9214, November 12, 1986.

Cullyer, W. J., "Implementing Safety-Critical Systems: The VIPER
Microprocessor," VLSI Specification, Verification and Synthesis,
Kluwer Academic Publishers, 1988.

"System Specification for Combat Vehicle Command and Control
(DRAFT)," CVC2 Systems Implementation Working Group, 31
October 1990.

Defense & Analysis Center for Software, Kaman Sciences Corpora-
tion, P.O. Box 120, Utica, NY 13503.

Daly, W.M., Hopkins, A.L., and McKenna, J.F., "A Fault-Toler-
ant Digital Clocking System," 3rd International Symposium on Fault
Tolerant Computing, Palo Alto, CA, June 1973.

Deutsch, O. L., Desai, M., "Development and Demonstration of an
On-Board Mission Planner for Helicopters," CSDL Technical Re-
port CSDL-R-2056, April 1988.

"VHSIC Hardware Des c3"iption Language (VHDL) Documentation,"
Data Item Description, DD Form 1664, DI-EGDS-80811, May 11,
1989.

Di Vito, B. L., Butler, R. W., Caldwell, J. L., Formal Design and
Verification of a Reliable Computing Platform for Real-Time Con-
trol, NASA Technical Memorandum 102716, October 1990.

Di Vito, B., Butler, R., and Caldwell, J., "High Level Design Proof
of a Reliable Computing Platform," 2nd International Working Con-
ference on Dependable Computing for Critical Applications, Tuc-
son, AZ, February 1991.

Dolev, D., "The Byzantine Generals Slrike Again," Journal of Algo-

rithms, Vol. 3, 1982, pp. 14-30.

Dolev, D., Dwork, C., Stockmeyer, L., "On the Minimal Synchro-
nism Needed for Distributed Consensus," IBM Research Report RJ
4292 (46990), 5/8/84.

Felter, S. C., Douglas, P. H., Smith, C. A., "Avionics System In-
tegration for the MH-53J Helicopter," 9th Digital Avionics Systems
Conference, October 1990.

Fischer, M. J., Lynch, N. A., "A Lower Bound for the Time to As-
sure Interactive Consistency," Information Processing Letters, Vol.
14, No. 4, I3 June 1982, pp. I83-186.

Page A-3

[Foh89]

[GalgO]

[Go¢91]

[Gua90]

[Hart89]

[Hat87]

[Har88a]

[Har88b]

[Har91a]

[Har91b]

[Hirg0]

[Hun86]

[Hwa84]

[IEEE1076]

Fohler, G., Koza, C., "Heuristic Scheduling for Distributed Real-
Time Systems," Research Report No. 6/89, Institut fur Technische

Informatik, Technische Universitat Wien, Vienna, Austria, April
1989.

Galetti, R. R., Real-Time Digital Signatures and Authentication
Protocols, Master of Science thesis, Massachusetts Institute of

Technology, May 1990.

Goel, A.L., and Sahoo, S.N., "Formal Specifications and Reliabil-
ity: An Experimental Study," 1991 International Symposium on
Software Reliability Engineering, Austin, Texas, May 1991.

Guaspari, D., Marceau, C., and Polak, W., "Formal Verification of
Ada Programs," IEEE Transactions on Software Engineering, Spe-
cial Issue on Formal Methods in Software Engineering, Vol. 16,
No. 9, September 1990.

Hanaway, J. F., Morrehead, R. W., Space Shuttle Avionics Sys-
tem, NASA SP-504, 1989.

Harper, R., Critical Issues in Ultra-Reliable Parallel Processing,
PhD Thesis, Massachusetts Institute of Technology, Cambridge,
MA, June 1987.

Harper, R., Lala, J., Deyst, J., "Fault Tolerant Parallel Processor
Overview," 18th International Symposium on Fault Tolerant Com-
puting, June 1988, pp. 252-257.

Harper, R., "Reliability Analysis of Parallel Processing Systems,"
Proceedings of the 8th Digital Avionics Systems Conference.,
October 1988, pp. 213-219.

Harper, R., Lala, J., Fault Tolerant Parallel Processor, J. Guidance,

Control, and Dynamics, V. 14, N. 3, May-June 1991, pp. 554-563.

Harper, R., Alger, L., Lala, J., "Advanced Information Processing
System: Design and Validation Knowledgebase," NASA Contractor
Report 187544, September 1991.

Hird, G.R., "Formal Methods in Software Engineering," 9th
AIAA/IEEE Digital Avionics Systems Conference, Virginia Beach,
VA, October 1990, pp. 230-234.

Hunt, W.A., "FM8501: A Verified Microprocessor," Proceedings
of IFIP Working Group 10.2 Workshop, North Holland, Amster-
dam, 1986.

Hwang, K., Briggs, F., Computer Architecture and Parallel Pro-
_, McGraw-Hill, 1984.

"VHDL Language Reference Manual," IEEE Standard, IEEE Std
1076-1987, March 31, 1988.

Page A-4

[IEEE8021]

[IEEE8022]

[IEEE8023]

[IEEE8024]

[J88N2]

[J8701]

[Klj89]

[Kop89]

[Kop91]

[Kri85]

[La1841

[La184]

IL 85]

[La186a]

[La186b]

"Local and Metropolitan Area Networks: Overview and Architec-
ture," IEEE Standard, IEEE Std 802-1990, May 31, 1990.

"Logical Link Control," IEEE Standard, IEEE Std 802.2-1989, Au-
gust 17, 1989.

"Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications,"
IEEE Standard, IEEE 802.3-1988, June 9, 1988.

"Token-Passing Bus Access Method and Physical Layer Specifica-
tions," IEEE Standard, IEEE 802.4-1990.

"Linear Token Passing Multiplex Data Bus Protocol," Joint Inte-
grated Avionics Working Group Standard, Document J88-N2,

"Advanced Avionics Architecture (A3) Standard," Joint Integrated

Avionics Working Group Standard, Document J87-01.

Kljaich, J., Jr., Smith, B.T., and Wojcik, A.S., "Formal Verifica-
tion of Fault Tolerance Using Theorem-Proving Techniques," IEEE

Transactions on Computers, Vol. 38, No. 3, March 1989.

Kopetz, H., et. al., "Distributed Fault-Tolerant Real-Time Systems:
The MARS Approach," IEEE Micro, 9(1):25-40, February 1991.

Kopetz, H., et. al., "The Rolling Ball on MARS," Institut fur
Technische Informatik Research Report No. 13/91, Technische
Universitat Wien, Vienna, Austria, November 1991.

Krishna, C. M., Shin, K. G., Butler, R. W., "Ensuring Fault Tol-
erance of Phase Locked Clocks," IEEE Trans. Computers, Vol. C-

34, No. 8, August, 1985.

Lala, J. H., "An Advanced Information Processing System," 6th
AIAA-IEEE Digital Avionics Systems Conference, Baltimore, MD,
Dec. 1984.

Lala, J. H., "An Advanced Information Processing System," 6th

AIAA-IEEE Digital Avionics Systems Conference, Baltimore, MD,
December 1984.

Lal,, J. H., "Advanced Information Processing System: Fault De-
tection and Error Handling," AIAA Guidance, Navigation and Con-
trol Conf., Snowmass, CO, Aug. 1985.

Lala, J.H., "Fault Detection, Isolation, and Reconfiguration in the

Fault Tolerant Multiprocessor," Journal of Guidance, Control, and

Dynamics, Sept-Oct. 1986.

Lala, J. H., "A Byzantine Resilient Fault Tolerant Computer for

Nuclear Power Plant Applications," 16 th Annual International Sym-

Page A-5

11 89]

[Lal91]

ILam85]

[LapgO]

[Leh87]

[Liu73]

[LSP82]

[MA-I-IDBK]

[Ma78]

[McE88]

[MIL-HDBK-0036]

[MIL-HDBK-59]

[MIL-HDBK-217E]

[MIL-STD-344]

posium on Fault Tolerant Computing Systems, Vienna, Austria, 1-4
July 1986.

Lala, J.H., et. al., "Study of a Unified Hardware and Software
Fault Tolerant Architecture," NASA Contractor Report 181759,

January 1989.

Lala, J.H., R. Harper, K. Jaskowiak, G. Rosch, L. Alger, and A.
Schor "AIPS for Advanced Launch System: Architecture Synthesis

Report", NASA Contractor Report 187544, September 1991.

Lamport, L., Melliar-Smith, P. M., "Synchronizing Clocks in the
Presence of Faults," Journal of the ACM, 32(1):52-78, January
1985.

"Dependability: Basic Concepts and Terminology," J.C. Laprie -
Editor, Published by International Federation for Information Pro-
cessing (IFIP) Working Group 10.4 on Dependable Computing and
Fault Tolerance, December 1990.

Lehoczky, Sha, Ding, The Rate Monotonic Scheduling Algorithm -
Exact Characterization and Average Case Behavior, Technical Re-

port, Department of Statistics, Carnegie-Mellon University, 1987.

Liu, C. L., Layland, J. W., "Scheduling Algorithms for Multipro-
gaming in a hard Real-time Environment," J. ACM, 20(1):46-61,
1973.

Lamport, L., Shostak, R., Pease, M., "The Byzantine Generals
Problem," ACM Transactions on Programming Languages and

Systems, Vol. 4, No. 3, July 1982, p. 382-401.

Modular Avionics Handbook, Document No. 21530(0-6), FSCM

51993, Draft C, U. S. Air Force ASD-ALD/AX, 19 April 1990.

Martin, D. L., Gangsaas, D., "Testing of the YC-14 Flight Control
System Software," AIAA Journal of Guidance, Control, and Dy-
namics, Vol. 1, No. 4, July-August 1978.

McElvany, M. C., "Guaranteeing Deadlines in MAFT," IEEE Real-
Time Systems Symposium, Huntsville, AL, December 1988.

"Survivable Adaptable Fiber Optic Embedded Network II -
SAFENET II," Military Handbook, MIL-HDBK-0036, 1 March,
1990.

MIL-HDBK-59, "Computer-Aided Acquisition and Logistic Sup-
port (CALS) Program Implementation Guide," 20 December 1988.

MIL-HDBK-217E, "Reliability Prediction of Electronic Equip-

ment," 2 January 1990.

MIL-STD-344 (draft), "Standard Army Vetronics Architecture," 14

September, 1990.

Page A-6

[MIL-STD-785B]

[MIL-STD-1553]

[MIL-STD-1815A]

[NAS1-18565-14]

[Osd88]

[Pe80]

[PEI90120]

[Pek88]

[Pus89]

[Rad90]

[Rus89]

[SAE91]

[San90]

[Sch91]

[Spi891

[Spi90]

MIL-STD-785B, "Reliability Program for Systems and Equipment

Development and Production," 15 September 1980,

"Aircraft Internal Time Division Command/Response Multiplex Data

Bus," Military Standard, MIL-STD-1553B, 12 February, 1980.

MIL-STD-1815A, "Reference Manual for the Ada Programming

Language," 17 February 1983.

Statement of Work for NASA Contract NAS1-18565, Task 14,
June 1990.

Osder, S. S., "Digital Fly-by-Wire System for Advanced AH-64
Helicopters," 8th Digital Avionics Systems Conference, October
1988.

Pease, M., Shostak, R., Lamport, L., "Reaching Agreement in the
Presence of Faults," Journal of the ACM, Vol. 27, No. 2, April

1980, pp. 228-234.

XTP® Protocol Definition, Revision 3.5, Published by Protocol
Engines Inc., September i990.

Pekelsma, N. J., "Optimal Guidance with Obstacle Avoidance for

Nap-of-the Earth Flight," NASA Contractor Report 177515, De-
cember 1988.

Puschner, P., Koza, C., "Calculating the Maximum Execution Time
of Real-Time Programs," Real-Time Systems, 1(2):159-176,

September 1989.

PMV 68 CPU-3A Specification, Issue 3, Publication No.
681/SA/04085, Radstone Technology plc, 1990.

Rushby, J., von Henke, F., "Formal Verification of a Fault Tolerant
Clock Synchronization Algorithm," NASA Contractor Report 4239,
June 1989.

SAE/AS-2A Subcommittee RTMT Statement on Requirements for
Real-Time Communication Protocols (RTCP), Issue #1, SAE

ARD50007, August 2 I991.

STAR MVP Technical Description, Document No. 4069718, Lock-
heed Sanders, 25 June 1990.

Schutz, W., "On the Testability of Distributed Real-Time Systems,"
Proc. Tenth Symposium on Reliable Distributed Systems, Pisa,

Italy, September, 1991.

Spivey, J.M., The Z Notation, A Reference Manual, Prentice Hall
International (UK) Ltd, i989.

Spivey, J.M., "Specifying a Real-Time Kernel," IEEE Software,

Special Issue on Formal Methods, Vol. 7, No. 5, Sep 1990.

PageA-7

[SdgO]

[StaB7]

[Sun74]

[Tan88]

[X3T95]

Srivas, M. and Bickford, M., "Formal Verification of a Pipelined
Microprocessor," IEEE Software, Special Issue on Formal Meth-
ods, Vol. 7, No. 5, September 1990.

Stankovic, J. A., Ramamritham, K., "The Design of the Spring
Kernel," Proc. of the Real Time Systems Symposium, December
1987.

Sundstrom, R. J., "On-Line Diagnosis of Sequential Systems,"
PhD Thesis, University of Michigan, 1974.

Tanenbaum, A. S., Computer Networks, second edition, Prentice-
Hall, 1988.

"FDDI Station Management (SMT)," Preliminary Draft Proposed
American National Standard, X3T9.5/84-49, Rev. 6.2, May 18,
1990.

Xpress Transfer Protocol®, XTP®, and Protocol Engine® are registered trademarks of

Protocol Engines, Incorporated.

Page A-8

Appendix B. Glossary of Terms and Acronyms

AFTA-Army Fault-Tolerant Architecture-A computer designed for both high reliability and

high throughput. The AFI'A is based on the FTPP architecture.

_-A set of tasks whose iteration rates are unknown or undefined.

ASIC-A_Dplication Specific Integrated Circuit-A type of integrated circuit that can be custom

designed by the hardware engineer so that it will perform a particular logic or processing

function and at the same time save circuit board space and power consumption. The advent

of VLSI design techniques has made ASICs a more flexible and practical option for hard-

ware designers.

ATP-Authentication Protocol-A protocol utilized by the BRNP to sign outgoing packets

and to test the authenticity of incoming packets.

ATPG-Automatic TesLPattern Generation-The generation of test vectors directly from a

netlist for ve_ i'A.:_ tion of device functionality. Test vectors from an ATI_ program do not

test the correct functionality of the device; they only test that the device is a correct imple-

mentation of the design as specified by the netlist.

behavioralYHDL is defined to be a VHDL architecture which uses any of the legal VHDL

constructs, including those which do not correspond to possible hardware realizations of

the description (i.e., pure behavioral may not be synthesizeable). A level of description

that specifies a device functionally in terms of output reactions to input stimulus. A behav-

ioral description can also specify the timing relationships of inputs to outputs.

BIT-Built In Test-This is an internal diagnostic testing system that is included as part of the

AFTA design. There are three forms of the BIT-- I-BIT is the initial power-on test system,

M-BIT is for maintenance testing, C-BIT is the continuous in-flight test system.

BRNP-Byzantine Resilient Network Protocol-A network layer protocol which implements

the Byzantine Resilient Virtual Circuit in order to guarantee that all messages are delivered

accurately.

broadcast addressin_,-A method of station addressing using an identifier that causes all sta-

tions to respond to the specified address.

Page B- 1

b.,gllt_-The ability to effectively isolate a node from the network without disrupting the

continuity of the network.

Byzantine Resilient-Capable of tolerating Byzantine faults. A Byzantine Resilient system is

capable of handling arbitrarily malfunctioning components that may supply faulty informa-

tion to other parts of the system thereby causing a spread of faulty information within the

system.

C3-Cluster 3-An FTPP model number. Composed of either 4 or 5 FCRs, 3-40 processors,

1-40 VIDs, simplex, triplex, and quadruplex processor redundancy levels. Previous FFPP

models were C1 (4 FCRs, 16 processors, 4-16 VIDs, simplex, duplex, triplex, and

quadruplex processor redundancy levels) and C2 (4 FCRs, 4 processors, one fixed quad

VID).

cache-A form of memory that is typically much faster and much smaller than main memory.

Through utilization of cache memory, a processor's throughput will be increased. Typi-

cally cache memory acts as a staging area for data; information will be pulled from main

memory and temporarily stored in cache while it undergoes processing.

CDU-Cockpit Display Unit-A cathode ray tube display located in the vehicle cockpit for

display of system status. The CDU may display overall AFTA system status, LRU level

status, or LRM level status.

CID-Communication ldentification-A designation assigned to each task which is used for

intertask communication.

class test-A test of the Network Element voting mechanism that requests a non-congruent

message exchange selectively on each channel of a fault masking group.

cluster-An FI'PP consisting of 4 or 5 FCRs containing at least one virtual processing site.

Multiple clusters could be connected by a network device (such as a fault-tolerant data bus)

to provide even greater throughput than a single cluster. Most references to an FTPP refer

to a single cluster design.

CMF-Common Mode Fault-A type of malfunction which will cause multiple faults or

complete execution failure within a redundant processing group. Common mode faults

may result from software flaws, hardware bugs, design flaws, massive electrical upsets

etc.

Page B-2

ll.,_Kt.JIQ-Input/Output processes that allow the associated virtual group to perform

other tasks while I/O is collecting data. This allows for greater processor throughput.

CRC-Cyclic Redundancy Check-An error detecting code used in data communications that

allows the unit receiving a message to ensure through binary mathematics that it is the same

message sent by the transmitting unit.

CSMA/_-Carrier Sense Multiple Access with.Collision l)etection-A form of media access

control whereby a potential transmitting station will monitor the bus to ensure that it is clear

before transmission begins. During transmission, the station also monitors the bus to

check for message collisions. If a collision occurs, the message must be re-transmitted.

CT-Configuration Table-A table stored on the Network Element that contains the current

configuration of the system, i.e. which processors are members of which virtual groups.

DAIS-Digital Avionics Instruction Set-A benchmark for measuring processor throughput.

dgl__l_-A set of diagnostic level tests executed outside of the constraints of a real-time

environment with emphasis on tlie isolation of chip level faults in these components. These

tests would occur at a maintenance repair facility in contrast to the various forms of built-in

testing.

DPRAM-DuaI-Port Random Access Memory-The type of memory that occupies the data

segment. It provides a buffer between the NE and the PE; both the NE and the PE may ac-

cess the data segment asynchronously, provided that they do not attempt to access the same

location.

DR-Discrepancy RepowA report that is filed whenever unexpected behavior of the hard-

ware, software, or system is encountered. By recording observable symptoms of the sys-

tem throughout testing, integration, verification and validation, one may better trace and

identify system flaws.

nl-A specific instance of a protocol element in an Open Systems Interconnection layer or

sublayer.

FCR-Fault Containment Region-Usually comprised of a number of line replaceable mod-

ules such as Processing Elements, Network Elements, input/output controller, and power

conditioners. The AFTA is made up of four or five FCR's, and each FCR usually resides

PageB-3

on a single circuit board (with the exception of the power conditioner). An interchangeable

term for the FCR is Line Replaceable Unit or LRU.

FDDI-Fiber Distributed Data Interface-A networking standard developed by the American

National Standards Institute to provide high bandwidth for Local Area Networks.

FDIR-Fault Detection. Identification and Recovery-FDIR software designed for the AFTA

allows it to sustain multiple successive faults by identifying a faulty component and recon-

figuring the AFTA system operation to compensate for the fault.

FIFO-First In First Out-A type of information buffer in which the data that is stored f'trst

chronologically will be the first to be extracted.

FMEA-Failure Modes and Effects Analysis

FMG-Fault Masking Group-A logical grouping of three or four processors to enhance the

reliability of critical tasks. The members of an FMG execute the same code with the same

data and periodically exchange messages to ensure that they produce the same outputs.

FTC-Fault Tolerant Clock-A distributed digital phase-locked loop used for synchronization

of AFFA fault containment regions.

FTDB-Fauk Tolerant Data Bus-A local area network designed around principles of Byzan-

tine resilience. Its primary objective is to provide an optimal intemetworking system be-

tween simplex and redundant processing sites.

FTN_ P-Fault Tolerant Navigation Processor-The initial ground vehicle application for the

AFTA is for the navigations system in Armored Systems Modernization vehicles.

t!,IP.P-Fault-Tolerant Parallel Processor-A computer designed for both high reliability and

high throughput. The core of the FTPP is the Network Element.

functional reliability-The probability that a given function can be executed because its re-

sources are operational.

functional synchronization-In maintaining synchronous operation, the members of a VID

perform a synchronizing act after some sequence of functions has been completed. The se-

quence of functions between the synchronization points is referred to as a frame.

Page B-4

GC-Global Controller-A microcoded finite-state machine used to coordinate the functions

throughout the Network Element.

graceful de_adation-Through self-testing, a virtual group may identify a faulty member

and gracefully degrade its redundancy level using a configuration table update message to

eliminate the faulty channel.

IOC-Input/Output Controller-These devices connect the AFTA to the outside world, and

they must be compatible with the bus connecting elements of the FCR. They may have a

programmable processor on board to drive the I/O, or they may require off-board proces-

sors for operation.

IPS-lnstructions Per Second-The number of machine language instructions that a processor

will execute every second. This measurement is used to reference the speed of the proces-

sor.

ISO/OSI-lnternational Standards Organization/Open Systems Interconnection-A specifica-

tion and model for computer communication networks.

LAN-Local Area.Network-A network topology that interconnects computer systems sepa-

rated by relatively short distances (2-2000 meters). LAN technology is usually based on a

shared medium with no intermediate switching nodes required.

leaf-level-(VHDL) The models at the bottom of the model tree. Leaf-level models in VHDL

axe always pure behavioral models.

LERP-Local Exchange Request Pattern-A string of bytes describing the current state of the

input and output buffers for each processor in an FCR. The LERP is used to generate the

SERP. Each FCR has a different configuration, therefore the LERPs for each FCR will be

different. For this reason, LERPs must be treated as single-source data.

link-An element in a physical network that provides interconnection between nodes.

LOC-_-This will occur as a result of a failure in any flight critical portion of

the Flight Control System. For analysis purposes, LOC will be considered as a total loss

of the vehicle.

Page B-5

Local _l-Each virtual group will exercise its own fault detection and identification pro-

cesses to monitor failures among its processors. Also, each virtual group may initiate its

own recovery options.

logical addressing-A method of station addressing using an identifier that may select a

group ofstafionsto respond to_especifi_addregs-

LRM-Line Replaceable Module-The physical unit for field diagnosis and repair. Typically

it consists of one circuit card assembly with one or more Processing Elements.

LTPB-Lincar Token Passing Bus-A media access control method whereby stations pass a

token along a virtual ring from one to another. A station may only transmit when it pos-

sesses the token.

MDC-Minimum l_i.'spatch Complement-This specifies the absolute minimum level of oper-

ability for the AFTA system to be cleared for a sortie.

media access control-The method by which access to the physical network media is limited

to a single node so that communications over the media are undisturbed.

media layer-One or more physical layer media. Multiple media layers are physically and

electrically isolated from each other to the same degree as a fault-containment region in a

fault-tolerant computer. Most traditional LANs use only a single network layer. A Byzan-

tine resilient network usually employs multiple media layers for redundancy.

merno_ alignment-A process whereby the RAM and registers in each processor of a virtual

group are made congruent as part of the resynchronization of a virtual group.

mission reliability-Arithmetically speaking, mission reliability is one minus the probability

that failure of the AFTA causes abortion of the mission.

MMC-Minirnurn Mission Complement-This specifies the minimum level of AFTA oper-

ability for the vehicle to continue its mission.

NDI-Non-Developmental Item

NE-btetwork Element-The hardware device which provides the connectivity between vir-

tual groups. The primary function of the NE is to exchange and vote packets of data pro-

_-6

videdby theprocessors.The ensemble of Network Elements forms a virtual bus network

to which all virtual groups are connected.

NE_-Network Element ID-The name by which a Network Element is known in the physi-

cal AFTA configuration. An NEID refers to a specific Network Element in the system, i.e.

the same NEID on different FCRs refers to th e s_e Network Element. The NEID is also

used to refer to the FCR in which the referenced Network Element resides. By convention,

letters are used to denote the NEID.

_-A list defining interconnections of components. Netlists are typically used for de-

signing printed circuit boards or ASICs.

NIU-Network Interface Unit-The connection between a station and the FI'DB

node-An element in a physical network that provides the necessary interface between a sta-

tion and the network media.

nonpreemptible I/O dispatcber-A task on the virtual group that manages the execution of

certain I/O instructions that cannot be interrupted.

_-A block of data consisting of a header, data, and a trailer exchanged between peer

protocol entities. The term packet is somewhat generic and is applied at all levels of the

protocol hierarchy.

_-A string of data of fixed or variable length for transmission from one processor to

another through an inter-processor network. A message-passing network handles data in

packets. The term packet is used here to refer to a fixed-size (64 bytes) block of data which

is transmitted by the Network Elements.

PDU-Protocol Data Unit-A fancy name for a packet. PDU is the name used by OSI.

PE-Processing Elemenl-A hardware device which provides a general or special purpose

processing site. A minimal PE configuration contains a single processor and local memory

(RAM and ROM). PEs may optionally have private I/O, making them a combination PE

and IOC.

PEID-Processing Element ID-The name by which a Processing Element is known in the

physical AFTA configuration. Each PE in an F.CR hasa unique PEID. However, the same

PageB-7

PEID may be usedby anotherprocessorin anotherFCR. A combination of NEID and

PEID is used to uniquely identify a single Processing Element within a cluster.

physical addressing-A method of station addressing using a unique identifier such that at

most one station responds to the specified address.

PIMA-Portable Intelligent Maintenance Aid-A system resembling a laptop computer which

will initiate the maintenance built in testing (M-BIT), interrogate AFTA for fault informa-

tion logged during a mission, and extract maintenance records for system components.

PMD-Physical layer Medium Dependent-The standard which defines the physical medium

that is used for the data communications channel on a network.

aresence test-The polling of various components to determine if each is active and syn-

chronized. The testing may be performed on members of virtual groups or on the virtual

groups themselves.

primitive-A function or procedure that one entity provides to another. The primitive def'mi-

tion specifies the inputs, outputs, and data formats for the primitive.

PROM-Pro_ammable Read Only Memory-A form of computer memory that will store a

permanent copy of one or more subroutines specifically intended for use by a particular mi-

croprocessor. PROM's allow for a certain level of hard-wired software control over the

processor.

quadruplex-A virtual group consisting of four processing sites.

rate m'oup dispatcher-An RG4 task that is responsible for controlling the execution of the

rate group tasks and providing reliable communication between the rate group tasks

throughout the system.

Re_ster Transfer Level (RTL) VHDL-A behavioral format which specifies the functionality

of a block from the standpoint of random combinational logic and/or synchronous regis-

ters. For the purpose of the AFTA NE development, RTL is defined to be synthesizeable

behavioral VHDL, that is, a behavioral VHDL description that is suitable for input to a

synthesis tool.

reprocurement-The act of obtaining new parts to replace parts in an existing system, or to

build additional copies of an existing design.

Page B-8

RG-_-A set of tasks whose iteration rate is well-defined and whose execution

times do not exceed the iteration frame (the inverse of the iteration rate).

RISC-Reduced Instruction Set Cornputer-A type of microprocessor which utilizes a limited

set of machine language instructions to allow for more rapid execution of those instructions

and thus greater throughput for the computer.

RTS-Run Tim_ System

SAVA-Standard Army Vetronics Architecture

sequential I/O-Input/Output processes that require the managing virtual group to completely

supervise the activity. In other words, the virtual group must block itself until the I/O is

finished.

SERP-System Exchange Request Pattern-A string of bytes describing the current state of

the input and Output buffers for each processor in the system. The SERP is used to deter-

mine if packets can be sent from one virtual group to another. The LERP from each FCR is

exchanged using a source congruency to generate the SERP. Because the SERP originates

from a source congruency exchange, it can be considered congruent throughout all func-

tioning FCRs.

SIFT-Software Implemented Fault Tolerance-System fault tolerance functions achieved

primarily through operating system programming rather than primarily through dedicated

hardware.

simplcx-A virtual group consisting of only one processing site.

single-source data-An element of information which originates from a single point. Exam-

ples of single-source data include sensor readings, input values, and syndromes. Single-

source data must be distributed to fault-masking groups using a source congruency ex-

change to maintain Byzantine resilience.

sortie availabilily-One minus the probability that the vehicle is prevented by the AFTA from

beginning a mission at the desired time.

source con m'uency-A type of exchange used to distribute data from a single source, such as

an input device, to members of a fault-masking group. The source congruency, which is

Page B-----q-

also known as a class 2, 2-round exchange, or interactive consistency, is a primary re-

quirement for a Byzantine resilient system.

stafion-A device connected to a network that can transmit or receive data over the network.

Often a station is a processing site. In the FTDB, a station can be a redundant processing

site.

structural VHDL-A level of description that specifies a VHDL architecture by defining in-

terconnections of instantiations of VHDL entities. A structural description resembles a

conventional neflist.

syndrome-A bit field indicating the observance of unusual behavior somewhere in the sys-

tem. Syndromes can be used in an attempt to diagnose and repair faults in the system.

_- A process that will coordinate system status and fault information as well a,s

testing and analyzing shared components.

lll,_Lllligg.gi_-The movement of a necessary task from a failed processor to another pro-

cessor within the same fault containment region.

test bench-A model of a test fixture that is used to test a device being designed with VHDL.

The test bench is written in VHDL and provides a non-proprietary way of stimulating and

monitoring a design in a simulator.

testability-The ability to unambiguously ascertain the functionality of each Line Replaceable

Module of the AFTA.

__/TA_l_Q_-Terrain Following/Terrain Avoidance/Nat) of the Earth-A typical helicopter

mission application for which the AF'FA will be designed.

THT-Tokcn Holding Timer-A method used with token passing media access protocols to

limit the amount of time each station can transmit on the network.

_-A value of time used to monitor skew between processors of an FMG. All proces-

sors in an FMG should be synchronized to within one timeout value, so if a processor does

not respond within the timeout period, that processor is considered faulty, and the other

processors will continue uninhibited. Timeouts are necessary on the AFTA to prevent

faulty processors from halting the system.

Page B- 10

_-A 32-bitquantitythatindicatestherelativetime within thecluster. TheNetwork

Elementplacesa timestampin theinputinfo blockfor eachpacketsuccessfuUydeliveredto

avirtual group.

TNR-Transient NE Recovery-The procedure by which a Network Element which has suf-

fered a transient fault is reintegrated into the cluster. The first part of TNR is similar to the

ISYNC procedure. TNR also specifies the realignment of the Network Element state.

transient recovery, policy-A recovery option whereby the faulty component is immediately

disabled and an attempt is made to reintegrate the component into the system.

lI:i_-A virtual group consisting of three processing sites.

_-The process of demonstrating that an implemented system correctly performs its

intended functions under all reasonably anticipated operational scenarios.

:t_dj.d_-In a Byzantine resilient system, a condition in which all functioning members of a

fault-masking group are guaranteed to possess correct data. The validity condition also

implies the agreement condition.

vehicle reliability-One minus the probability that the vehicle is lost due to failure of the

AFTA.

VG-virtual m'oup-A grouping of one or more processors to form a virtual (possibly redun-

dant) single processing site. All processors in a virtual group execute the same instruction

stream. If a virtual group has more than one member, those members must reside in differ-

ent FCRs. Virtual groups of 3 or more members are known as fault-masking groups.

VHDL-VHSIC Hardware Description Language-A language for specifying hardware de-

sign. VHDL designs can be expressed in a behavioral or a structural method. VHDL also

defines a simulation environment and incorporates an intrinsic sense of time.

VHSIC-Very High Speedlntegated Circuit-A Government-funded project to develop

technologies to be applied to new, high speed integrated circuits. The VHSIC Hardware

Description Language (VHDL) was developed under the VHSIC program.

VID-Virtual Identifier-The name by which a virtual group is known to the system. Also,

sometimes used as a synonym for virtual group.

Page B- 11

_-A messagesentby all membersof a redundantprocessinggroup. This

messagetype is only usedwhenexactconsensusamongall redundantmembersis ex-

pected.This is alsoknownasaClass1message.

voter test-A test of the Network Element voting mechanism that seeds non-congruent val-

ues selectively on each channel of a fault masking group.

WAN-Wide Area Network-A network topology that interconnects computer systems sepa-

rated by long distances. WAN systems usually use packet switched technology.

_-A simple timekeeper that will monitor operations in both the Processing El-

ements and the Network Elements to keep the hardware and software from wandering into

undesirable states.

l/Z.O..r.kiRg_gI_-The set of FCRs in a cluster which are synchronized and in the operational

phase. An FCR which suffers a fault drops out of the working group. The working group

may attempt to reintegrate the failed FCR into the working group.

WPV-P_/eight Power Volume-These are physical characteristics used to describe the AFTA.

Page B-12 °"

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Puld_ repealing I_rdlen lOT thb oollectlon of Irt_Tnation I= wtlm_ed to average 1 hour per nw_oneel including the lime lOT reviewing inldruc_lonl, searching existing dais sources.

galhedng lind ff, aJnlldn_g the data needed, and _ng _ reviewing the ¢ollec'tio*t of tntorrnatlon. SAnd oomments regarding this burden e4timale or any other lisped o(this

oolledk_ ol Infoml_lon. bduding suggeellone lot mduck_g thb bu_de_, to W_shlngton Headquartam $ervtoee, Dkedorata for Informalion Ot_altone _ Repods. 1215 Jailer=on Davis

1. AGENCY USE ONLY (Leave hick) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Jul_y 1992 Contractor Report

4. TITLE AhO SUBTITLE ' ' 5. FUN'D'II_'GNUMBERS

Advanced Information Processing System: The Army Fault Tolerant Architecture

ConceptuaIStudy -Volume [: Army Fault Tolerant Architecture Overview

8. AUTHOR(S)

R. E. Harper, L. S. Alger, C. A. Babikyan, B. P. Butler, S. A. Friend, R. J. Ganska,

J. H. Lala, T. K. Masotto, A. J. Meyer, D. P. Morton, G. A. Nagle, and C. E. Sakamaki

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The Charles Stark Draper Laboratory, Inc.

555 Technology Square

Cambridge, MA 02139

8. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSi_:S)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

WU 505-64-52-53

C NAS1-18565

TA 14

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORTNUMBER

NASA CR-189632, Volume I

_, TT

It. SUPP_MENTARY NOTES

Technical Monitor: Carl R. Elks, Aerostructurcs Directorate, AVILADA, AVSCOM,
La.gley ltcsearch Ce.ter, Hampton, VA

12,,. DISTRIBUTI()fi't A'VAILABILITYSTATEMENT

Unclassified- Unlimited

Star Category 62

12b. DISTRIBUTION CODE

13. ASSTRAC"r(M._mu__ '_;_.)

The Army Avionics Research and Development Activity (AVRADA) is pursuing programs that would enable effective and

efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The

"Computer-Aided Low Altitude Night Helicopter Flight Program" has identified automated Terrain Following/Terrain

Avoidance, Nap of the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotorcraft to enhance

mission survivability and mission effectiveness. The processing of critical information at low altitudes with short reaction

times is life-critical and mission critical necessitating a ultrareliable/high throughput computing platform for dependable

service for flight control, fusion of sensor data, route planning, near-field/far field navigation, and obstacle avoidance

operations.

To address these needs the Army Fault-Tolerant Architecture (AFTA) is being designed and developed. This computer

system is based upon the Fault-Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Laboratory, Inc.

(CSDL). AFTA is hard real-time, Byzantine fault-tolerant parallel processor which is programmed in the ADA language.

This document describes the results of conceptual study (Phase ! of a 3-year project) of the AFTA development. This

document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements, architecture

overview, hardware design, operating systems design, analytical models and development plan.

114. SUBJECT TERMS

117.

Fault-tolerant, Real-time digital computer, Terrain-following/terrain avoidance helicopter

operation

SECURITY CLASSIfiCATION 'lB. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

lg. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

18. PRICE CODE

A07
20. UMITATION OF ABSTRACT

Stand,rd Form 298 R_v. 2-8g)
pre=cdhed by ANSI _td.

298-102

